IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54844-4.html
   My bibliography  Save this article

Diffusion limited synthesis of wafer-scale covalent organic framework films for adaptative visual device

Author

Listed:
  • Minghui Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Junhua Kuang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaocang Han

    (Peking University)

  • Youxing Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenqiang Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shengcong Shang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xinyu Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiaxin Hong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bo Guan

    (Chinese Academy of Sciences)

  • Xiaoxu Zhao

    (Peking University)

  • Yunlong Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jichen Dong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhiyuan Zhao

    (Chinese Academy of Sciences)

  • Yan Zhao

    (Fudan University)

  • Chuan Liu

    (Sun Yat-sen University)

  • Yunqi Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jianyi Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Synthesizing high-crystalline covalent organic framework films is highly desired to advance their applications in two-dimensional optoelectronics, but it remains a great challenge. Here, we report a diffusion-limited synthesis strategy for wafer-scale uniform covalent organic framework films, in which pre-deposited 4,4′,4″,4‴-(1,3,6,8-Tetrakis(4-aminophenyl) pyrene is encapsulated on substrate surface with a layer of covalent organic framework prepolymer. The polymer not only prevents the dissolution of precursor, but limits the reaction with terephthalaldehyde dissolved in solution, thereby regulating the polymerization process. The size depends on growth substrates, and 4-inch films have been synthesized on silicon chips. Their structure, thickness, patterning and crystallization degree can be controlled by adjusting building blocks and polymerization chemistries, and molybdenum disulfide have been used as substrates to construct vertical heterostructure. The measurements reveal that using covalent organic framework as a photosensitive layer, the heterojunction displays enhanced photoelectric performance, which can be used to simulate the adaptative function of visual system.

Suggested Citation

  • Minghui Liu & Junhua Kuang & Xiaocang Han & Youxing Liu & Wenqiang Gao & Shengcong Shang & Xinyu Wang & Jiaxin Hong & Bo Guan & Xiaoxu Zhao & Yunlong Guo & Jichen Dong & Zhiyuan Zhao & Yan Zhao & Chua, 2024. "Diffusion limited synthesis of wafer-scale covalent organic framework films for adaptative visual device," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54844-4
    DOI: 10.1038/s41467-024-54844-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54844-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54844-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jichen Dong & Leining Zhang & Xinyue Dai & Feng Ding, 2020. "The epitaxy of 2D materials growth," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Hafeesudeen Sahabudeen & Haoyuan Qi & Bernhard Alexander Glatz & Diana Tranca & Renhao Dong & Yang Hou & Tao Zhang & Christian Kuttner & Tibor Lehnert & Gotthard Seifert & Ute Kaiser & Andreas Fery & , 2016. "Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    4. Zhuoxing Liu & Zidong Zhan & Tao Shen & Ning Li & Chengqi Zhang & Cunlong Yu & Chuxin Li & Yifan Si & Lei Jiang & Zhichao Dong, 2023. "Dual-bionic superwetting gears with liquid directional steering for oil-water separation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Bin Cui & Xingwen Zheng & Jianfeng Wang & Desheng Liu & Shijie Xie & Bing Huang, 2020. "Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Bin Cui & Xingwen Zheng & Jianfeng Wang & Desheng Liu & Shijie Xie & Bing Huang, 2020. "Author Correction: Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    7. Enquan Jin & Juan Li & Keyu Geng & Qiuhong Jiang & Hong Xu & Qing Xu & Donglin Jiang, 2018. "Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Guiyang Zhang & Xinle Li & Qiaobo Liao & Yanfeng Liu & Kai Xi & Wenyu Huang & Xudong Jia, 2018. "Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    9. Niaz Ali Khan & Runnan Zhang & Xiaoyao Wang & Li Cao & Chandra S. Azad & Chunyang Fan & Jinqiu Yuan & Mengying Long & Hong Wu & Mark. A. Olson & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Zhendong Lei & Qinsi Yang & Yi Xu & Siyu Guo & Weiwei Sun & Hao Liu & Li-Ping Lv & Yong Zhang & Yong Wang, 2018. "Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Xin Zhang & Xiaoyin Li & Zhengwang Cheng & Aixi Chen & Pengdong Wang & Xingyue Wang & Xiaoxu Lei & Qi Bian & Shaojian Li & Bingkai Yuan & Jianzhi Gao & Fang-Sen Li & Minghu Pan & Feng Liu, 2024. "Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Minghui Liu & Youxing Liu & Jichen Dong & Yichao Bai & Wenqiang Gao & Shengcong Shang & Xinyu Wang & Junhua Kuang & Changsheng Du & Ye Zou & Jianyi Chen & Yunqi Liu, 2022. "Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Yaxin Shi & Zhibin Guo & Qiang Fu & Xinyuan Shen & Zhongming Zhang & Wenjia Sun & Jinqiang Wang & Junliang Sun & Zizhu Zhang & Tong Liu & Zhen Gu & Zhibo Liu, 2023. "Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Maria-Anna Gatou & Panagiota Bika & Thomas Stergiopoulos & Panagiotis Dallas & Evangelia A. Pavlatou, 2021. "Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications," Energies, MDPI, vol. 14(11), pages 1-26, May.
    8. Hao Yang & Jinhui Xu & Hui Cao & Jie Wu & Dan Zhao, 2023. "Recovery of homogeneous photocatalysts by covalent organic framework membranes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Cheng-Rong Zhang & Wei-Rong Cui & Shun-Mo Yi & Cheng-Peng Niu & Ru-Ping Liang & Jia-Xin Qi & Xiao-Juan Chen & Wei Jiang & Xin Liu & Qiu-Xia Luo & Jian-Ding Qiu, 2022. "An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4− or 99TcO4−," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Anupam Prasoon & Shaik Ghouse & Nguyen Ngan Nguyen & Hyejung Yang & Alina Müller & Chandrasekhar Naisa & Silvia Paasch & Abdallh Herbawe & Muhannad Al Aiti & Gianaurelio Cuniberti & Eike Brunner & Xin, 2024. "Mimicking on-water surface synthesis through micellar interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Xunliang Hu & Zhen Zhan & Jianqiao Zhang & Irshad Hussain & Bien Tan, 2021. "Immobilized covalent triazine frameworks films as effective photocatalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Minghao Liu & Shuai Yang & Xiubei Yang & Cheng-Xing Cui & Guojuan Liu & Xuewen Li & Jun He & George Zheng Chen & Qing Xu & Gaofeng Zeng, 2023. "Post-synthetic modification of covalent organic frameworks for CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Thomas F. Magnera & Paul I. Dron & Jared P. Bozzone & Milena Jovanovic & Igor Rončević & Edward Tortorici & Wei Bu & Elisa M. Miller & Charles T. Rogers & Josef Michl, 2023. "Porphene and porphite as porphyrin analogs of graphene and graphite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Xin Li & Guilin Wu & Leining Zhang & Deping Huang & Yunqing Li & Ruiqi Zhang & Meng Li & Lin Zhu & Jing Guo & Tianlin Huang & Jun Shen & Xingzhan Wei & Ka Man Yu & Jichen Dong & Michael S. Altman & Ro, 2022. "Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54844-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.