IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29451-w.html
   My bibliography  Save this article

Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates

Author

Listed:
  • Xin Li

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Guilin Wu

    (College of Materials Science and Engineering, Chongqing University
    University of Science and Technology Beijing)

  • Leining Zhang

    (Institute for Basic Science (IBS)
    Ulsan National Institute of Science and Technology (UNIST))

  • Deping Huang

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences)

  • Yunqing Li

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ruiqi Zhang

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Meng Li

    (Electron Microscope Center, Chongqing University)

  • Lin Zhu

    (Electron Microscope Center, Chongqing University)

  • Jing Guo

    (College of Materials Science and Engineering, Chongqing University)

  • Tianlin Huang

    (College of Materials Science and Engineering, Chongqing University)

  • Jun Shen

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences)

  • Xingzhan Wei

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences)

  • Ka Man Yu

    (The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon)

  • Jichen Dong

    (Institute for Basic Science (IBS))

  • Michael S. Altman

    (The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon)

  • Rodney S. Ruoff

    (Institute for Basic Science (IBS)
    Ulsan National Institute of Science and Technology (UNIST)
    Ulsan National Institute of Science and Technology (UNIST)
    Ulsan National Institute of Science and Technology (UNIST))

  • Yinwu Duan

    (Chongqing Key Laboratory of Graphene Film Manufacturing)

  • Jie Yu

    (Chongqing Key Laboratory of Graphene Film Manufacturing)

  • Zhujun Wang

    (Shanghai Tech University)

  • Xiaoxu Huang

    (College of Materials Science and Engineering, Chongqing University
    Chongqing University)

  • Feng Ding

    (Institute for Basic Science (IBS)
    Ulsan National Institute of Science and Technology (UNIST))

  • Haofei Shi

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenxin Tang

    (Electron Microscope Center, Chongqing University)

Abstract

The use of single-crystal substrates as templates for the epitaxial growth of single-crystal overlayers has been a primary principle of materials epitaxy for more than 70 years. Here we report our finding that, though counterintuitive, single-crystal 2D materials can be epitaxially grown on twinned crystals. By establishing a geometric principle to describe 2D materials alignment on high-index surfaces, we show that 2D material islands grown on the two sides of a twin boundary can be well aligned. To validate this prediction, wafer-scale Cu foils with abundant twin boundaries were synthesized, and on the surfaces of these polycrystalline Cu foils, we have successfully grown wafer-scale single-crystal graphene and hexagonal boron nitride films. In addition, to greatly increasing the availability of large area high-quality 2D single crystals, our discovery also extends the fundamental understanding of materials epitaxy.

Suggested Citation

  • Xin Li & Guilin Wu & Leining Zhang & Deping Huang & Yunqing Li & Ruiqi Zhang & Meng Li & Lin Zhu & Jing Guo & Tianlin Huang & Jun Shen & Xingzhan Wei & Ka Man Yu & Jichen Dong & Michael S. Altman & Ro, 2022. "Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29451-w
    DOI: 10.1038/s41467-022-29451-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29451-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29451-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jichen Dong & Leining Zhang & Xinyue Dai & Feng Ding, 2020. "The epitaxy of 2D materials growth," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Li Wang & Xiaozhi Xu & Leining Zhang & Ruixi Qiao & Muhong Wu & Zhichang Wang & Shuai Zhang & Jing Liang & Zhihong Zhang & Zhibin Zhang & Wang Chen & Xuedong Xie & Junyu Zong & Yuwei Shan & Yi Guo & M, 2019. "Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper," Nature, Nature, vol. 570(7759), pages 91-95, June.
    3. Muhong Wu & Zhibin Zhang & Xiaozhi Xu & Zhihong Zhang & Yunrui Duan & Jichen Dong & Ruixi Qiao & Sifan You & Li Wang & Jiajie Qi & Dingxin Zou & Nianze Shang & Yubo Yang & Hui Li & Lan Zhu & Junliang , 2020. "Seeded growth of large single-crystal copper foils with high-index facets," Nature, Nature, vol. 581(7809), pages 406-410, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Taewoo Ha & Yu-Seong Seo & Teun-Teun Kim & Bipin Lamichhane & Young-Hoon Kim & Su Jae Kim & Yousil Lee & Jong Chan Kim & Sang Eon Park & Kyung Ik Sim & Jae Hoon Kim & Yong In Kim & Seon Je Kim & Hu Yo, 2023. "Coherent consolidation of trillions of nucleations for mono-atom step-level flat surfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Bo Tian & Junzhu Li & Qingxiao Wang & Abdus Samad & Yue Yuan & Mohamed Nejib Hedhili & Arun Jangir & Marco Gruenewald & Mario Lanza & Udo Schwingenschlögl & Torsten Fritz & Xixiang Zhang & Zheng Liu, 2024. "Ultraflat Cu(111) foils by surface acoustic wave-assisted annealing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zheyi Lu & Yang Chen & Weiqi Dang & Lingan Kong & Quanyang Tao & Likuan Ma & Donglin Lu & Liting Liu & Wanying Li & Zhiwei Li & Xiao Liu & Yiliu Wang & Xidong Duan & Lei Liao & Yuan Liu, 2023. "Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Di Zhang & Peiyun Yi & Xinmin Lai & Linfa Peng & Hao Li, 2024. "Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Lingxin Luo & Lingxiang Hou & Xueping Cui & Pengxin Zhan & Ping He & Chuying Dai & Ruian Li & Jichen Dong & Ye Zou & Guoming Liu & Yanpeng Liu & Jian Zheng, 2024. "Self-condensation-assisted chemical vapour deposition growth of atomically two-dimensional MOF single-crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Su-Beom Song & Sangho Yoon & So Young Kim & Sera Yang & Seung-Young Seo & Soonyoung Cha & Hyeon-Woo Jeong & Kenji Watanabe & Takashi Taniguchi & Gil-Ho Lee & Jun Sung Kim & Moon-Ho Jo & Jonghwan Kim, 2021. "Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Jingxian Zhong & Dawei Zhou & Qi Bai & Chao Liu & Xinlian Fan & Hehe Zhang & Congzhou Li & Ran Jiang & Peiyi Zhao & Jiaxiao Yuan & Xiaojiao Li & Guixiang Zhan & Hongyu Yang & Jing Liu & Xuefen Song & , 2024. "Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Peiming Zheng & Wenya Wei & Zhihua Liang & Biao Qin & Jinpeng Tian & Jinhuan Wang & Ruixi Qiao & Yunlong Ren & Junting Chen & Chen Huang & Xu Zhou & Guangyu Zhang & Zhilie Tang & Dapeng Yu & Feng Ding, 2023. "Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Pengfei Yang & Dashuai Wang & Xiaoxu Zhao & Wenzhi Quan & Qi Jiang & Xuan Li & Bin Tang & Jingyi Hu & Lijie Zhu & Shuangyuan Pan & Yuping Shi & Yahuan Huan & Fangfang Cui & Shan Qiao & Qing Chen & Zhe, 2022. "Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Fankai Zeng & Ran Wang & Wenya Wei & Zuo Feng & Quanlin Guo & Yunlong Ren & Guoliang Cui & Dingxin Zou & Zhensheng Zhang & Song Liu & Kehai Liu & Ying Fu & Jinzong Kou & Li Wang & Xu Zhou & Zhilie Tan, 2023. "Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29451-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.