IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13794-y.html
   My bibliography  Save this article

Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism

Author

Listed:
  • Bin Cui

    (Shandong University)

  • Xingwen Zheng

    (Shandong University)

  • Jianfeng Wang

    (Beijing Computational Science Research Center)

  • Desheng Liu

    (Shandong University)

  • Shijie Xie

    (Shandong University)

  • Bing Huang

    (Beijing Computational Science Research Center)

Abstract

Lieb lattice has been predicted to host various exotic electronic properties due to its unusual Dirac-flat band structure. However, the realization of a Lieb lattice in a real material is still unachievable. Based on tight-binding modeling, we find that the lattice distortion can significantly determine the electronic and topological properties of a Lieb lattice. Importantly, based on first-principles calculations, we predict that the two existing covalent organic frameworks (COFs), i.e., sp2C-COF and sp2N-COF, are actually the first two material realizations of organic-ligand-based Lieb lattice. Interestingly, the sp2C-COF can experience the phase transitions from a paramagnetic state to a ferromagnetic one and then to a Néel antiferromagnetic one, as the carrier doping concentration increases. Our findings not only confirm the first material realization of Lieb lattice in COFs, but also offer a possible way to achieve tunable topology and magnetism in organic lattices.

Suggested Citation

  • Bin Cui & Xingwen Zheng & Jianfeng Wang & Desheng Liu & Shijie Xie & Bing Huang, 2020. "Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13794-y
    DOI: 10.1038/s41467-019-13794-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13794-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13794-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Xin Zhang & Xiaoyin Li & Zhengwang Cheng & Aixi Chen & Pengdong Wang & Xingyue Wang & Xiaoxu Lei & Qi Bian & Shaojian Li & Bingkai Yuan & Jianzhi Gao & Fang-Sen Li & Minghu Pan & Feng Liu, 2024. "Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13794-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.