IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38424-6.html
   My bibliography  Save this article

Recovery of homogeneous photocatalysts by covalent organic framework membranes

Author

Listed:
  • Hao Yang

    (National University of Singapore)

  • Jinhui Xu

    (National University of Singapore)

  • Hui Cao

    (National University of Singapore)

  • Jie Wu

    (National University of Singapore)

  • Dan Zhao

    (National University of Singapore)

Abstract

Transition metal-based homogeneous photocatalysts offer a wealth of opportunities for organic synthesis. The most versatile ruthenium(II) and iridium(III) polypyridyl complexes, however, are among the rarest metal complexes. Moreover, immobilizing these precious catalysts for recycling is challenging as their opacity may obstruct light transmission. Recovery of homogeneous catalysts by conventional polymeric membranes is promising but limited, as the modulation of their pore structure and tolerance of polar organic solvents are challenging. Here, we report the effective recovery of homogeneous photocatalysts using covalent organic framework (COF) membranes. An array of COF membranes with tunable pore sizes and superior organic solvent resistance were prepared. Ruthenium and iridium photoredox catalysts were recycled for 10 cycles in various types of photochemical reactions, constantly achieving high catalytical performance, high recovery rates, and high permeance. We successfully recovered the photocatalysts at gram-scale. Furthermore, we demonstrated a cascade isolation of an iridium photocatalyst and purification of a small organic molecule product with COF membranes possessing different pore sizes. Our results indicate an intriguing potential to shift the paradigm of the pharmaceutical and fine chemical synthesis campaign.

Suggested Citation

  • Hao Yang & Jinhui Xu & Hui Cao & Jie Wu & Dan Zhao, 2023. "Recovery of homogeneous photocatalysts by covalent organic framework membranes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38424-6
    DOI: 10.1038/s41467-023-38424-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38424-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38424-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Hao Yang & Leixin Yang & Hongjian Wang & Ziang Xu & Yumeng Zhao & Yi Luo & Nayab Nasir & Yimeng Song & Hong Wu & Fusheng Pan & Zhongyi Jiang, 2019. "Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Zhenghui Wen & Diego Pintossi & Manuel Nuño & Timothy Noël, 2022. "Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jian Jin & David W. C. MacMillan, 2015. "Alcohols as alkylating agents in heteroarene C–H functionalization," Nature, Nature, vol. 525(7567), pages 87-90, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijie Yin & Jianguo Li & Zhuozhi Lai & Qing-Wei Meng & Weipeng Xian & Zhifeng Dai & Sai Wang & Li Zhang & Yubing Xiong & Shengqian Ma & Qi Sun, 2024. "Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Liping Zheng & Zhengqing Zhang & Zhuozhi Lai & Shijie Yin & Weipeng Xian & Qing-Wei Meng & Zhifeng Dai & Yubing Xiong & Xiangju Meng & Shengqian Ma & Feng-Shou Xiao & Qi Sun, 2024. "Covalent organic framework membrane reactor for boosting catalytic performance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guohua Zhang & Xinyue Li & Gang Chen & Yue Zhang & Mingfeng Wei & Xiaofei Chen & Bao Li & Yuqing Wu & Lixin Wu, 2023. "Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yisa Zhou & Ying Wu & Haoyu Wu & Jian Xue & Li Ding & Rui Wang & Haihui Wang, 2022. "Fast hydrogen purification through graphitic carbon nitride nanosheet membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yingguo Li & Jialun He & Guilong Lu & Chensheng Wang & Mengmeng Fu & Juan Deng & Fu Yang & Danfeng Jiang & Xiao Chen & Ziyi Yu & Yan Liu & Chao Yu & Yong Cui, 2024. "De novo construction of amine-functionalized metal-organic cages as heterogenous catalysts for microflow catalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Xiaoyao Wang & Benbing Shi & Hao Yang & Jingyuan Guan & Xu Liang & Chunyang Fan & Xinda You & Yanan Wang & Zhe Zhang & Hong Wu & Tao Cheng & Runnan Zhang & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes with superior ion exchange capacity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38424-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.