IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02889-7.html
   My bibliography  Save this article

Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry

Author

Listed:
  • Zhendong Lei

    (Shanghai University
    National University of Singapore)

  • Qinsi Yang

    (Shanghai University)

  • Yi Xu

    (Shanghai University)

  • Siyu Guo

    (Shanghai University)

  • Weiwei Sun

    (Shanghai University)

  • Hao Liu

    (Shanghai University)

  • Li-Ping Lv

    (Shanghai University)

  • Yong Zhang

    (National University of Singapore)

  • Yong Wang

    (Shanghai University)

Abstract

Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g−1 and can sustain 500 cycles at 100 mA g−1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

Suggested Citation

  • Zhendong Lei & Qinsi Yang & Yi Xu & Siyu Guo & Weiwei Sun & Hao Liu & Li-Ping Lv & Yong Zhang & Yong Wang, 2018. "Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02889-7
    DOI: 10.1038/s41467-018-02889-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02889-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02889-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minghui Liu & Youxing Liu & Jichen Dong & Yichao Bai & Wenqiang Gao & Shengcong Shang & Xinyu Wang & Junhua Kuang & Changsheng Du & Ye Zou & Jianyi Chen & Yunqi Liu, 2022. "Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Minghao Liu & Shuai Yang & Xiubei Yang & Cheng-Xing Cui & Guojuan Liu & Xuewen Li & Jun He & George Zheng Chen & Qing Xu & Gaofeng Zeng, 2023. "Post-synthetic modification of covalent organic frameworks for CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Minghui Liu & Junhua Kuang & Xiaocang Han & Youxing Liu & Wenqiang Gao & Shengcong Shang & Xinyu Wang & Jiaxin Hong & Bo Guan & Xiaoxu Zhao & Yunlong Guo & Jichen Dong & Zhiyuan Zhao & Yan Zhao & Chua, 2024. "Diffusion limited synthesis of wafer-scale covalent organic framework films for adaptative visual device," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02889-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.