IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50211-5.html
   My bibliography  Save this article

Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands

Author

Listed:
  • Xin Zhang

    (Shaanxi Normal University)

  • Xiaoyin Li

    (University of Utah)

  • Zhengwang Cheng

    (Hubei University of Technology)

  • Aixi Chen

    (Chinese Academy of Sciences (CAS))

  • Pengdong Wang

    (Chinese Academy of Sciences (CAS))

  • Xingyue Wang

    (Shaanxi Normal University)

  • Xiaoxu Lei

    (Chinese Academy of Sciences (CAS))

  • Qi Bian

    (Huazhong University of Science and Technology)

  • Shaojian Li

    (Huazhong University of Science and Technology)

  • Bingkai Yuan

    (Chinese Academy of Sciences (CAS))

  • Jianzhi Gao

    (Shaanxi Normal University)

  • Fang-Sen Li

    (Chinese Academy of Sciences (CAS))

  • Minghu Pan

    (Shaanxi Normal University
    Huazhong University of Science and Technology)

  • Feng Liu

    (University of Utah)

Abstract

The current strategies for building 2D organic-inorganic heterojunctions involve mostly wet-chemistry processes or exfoliation and transfer, leading to interface contaminations, poor crystallizing, or limited size. Here we show a bottom-up procedure to fabricate 2D large-scale heterostructure with clean interface and highly-crystalline sheets. As a prototypical example, a well-ordered hydrogen-bonded organic framework is self-assembled on the highly-oriented-pyrolytic-graphite substrate. The organic framework adopts a honeycomb lattice with faulted/unfaulted halves in a unit cell, resemble to molecular “graphene”. Interestingly, the topmost layer of substrate is self-lifted by organic framework via strong interlayer coupling, to form effectively a floating organic framework/graphene heterostructure. The individual layer of heterostructure inherits its intrinsic property, exhibiting distinct Dirac bands of graphene and narrow bands of organic framework. Our results demonstrate a promising approach to fabricate 2D organic-inorganic heterostructure with large-scale uniformity and highly-crystalline via the self-lifting effect, which is generally applicable to most of van der Waals materials.

Suggested Citation

  • Xin Zhang & Xiaoyin Li & Zhengwang Cheng & Aixi Chen & Pengdong Wang & Xingyue Wang & Xiaoxu Lei & Qi Bian & Shaojian Li & Bingkai Yuan & Jianzhi Gao & Fang-Sen Li & Minghu Pan & Feng Liu, 2024. "Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50211-5
    DOI: 10.1038/s41467-024-50211-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50211-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50211-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinghui Wang & Hongde Yu & Xu Zhou & Xiaozhi Liu & Renjie Zhang & Zhixing Lu & Jingying Zheng & Lin Gu & Kaihui Liu & Dong Wang & Liying Jiao, 2017. "Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    2. Xiaoyue He & Lei Zhang & Rebekah Chua & Ping Kwan Johnny Wong & Arramel Arramel & Yuan Ping Feng & Shi Jie Wang & Dongzhi Chi & Ming Yang & Yu Li Huang & Andrew Thye Shen Wee, 2019. "Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Jean-Joseph Adjizian & Patrick Briddon & Bernard Humbert & Jean-Luc Duvail & Philipp Wagner & Coline Adda & Christopher Ewels, 2014. "Dirac Cones in two-dimensional conjugated polymer networks," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    4. Wei Jiang & Huaqing Huang & Feng Liu, 2019. "A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Bin Cui & Xingwen Zheng & Jianfeng Wang & Desheng Liu & Shijie Xie & Bing Huang, 2020. "Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    7. Ali Nawaz & Leandro Merces & Denise M. Andrade & Davi H. S. Camargo & Carlos C. Bof Bufon, 2020. "Edge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    8. Bin Cui & Xingwen Zheng & Jianfeng Wang & Desheng Liu & Shijie Xie & Bing Huang, 2020. "Author Correction: Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    9. Z.F Wang & Zheng Liu & Feng Liu, 2013. "Organic topological insulators in organometallic lattices," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.
    18. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Ricky Dwi Septianto & Retno Miranti & Tomoka Kikitsu & Takaaki Hikima & Daisuke Hashizume & Nobuhiro Matsushita & Yoshihiro Iwasa & Satria Zulkarnaen Bisri, 2023. "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50211-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.