IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37253-x.html
   My bibliography  Save this article

Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy

Author

Listed:
  • Yaxin Shi

    (Peking University)

  • Zhibin Guo

    (Peking University)

  • Qiang Fu

    (Nankai University)

  • Xinyuan Shen

    (Zhejiang University)

  • Zhongming Zhang

    (Lancaster University)

  • Wenjia Sun

    (Peking University)

  • Jinqiang Wang

    (Zhejiang University)

  • Junliang Sun

    (Peking University)

  • Zizhu Zhang

    (Beijing Nuclear Industry Hospital)

  • Tong Liu

    (Beijing Capture Tech Co. Ltd)

  • Zhen Gu

    (Zhejiang University
    Jinhua Institute of Zhejiang University
    School of Medicine, Zhejiang University
    Zhejiang University Medical Center)

  • Zhibo Liu

    (Peking University
    Peking University
    Changping Laboratory
    Peking University Cancer Hospital & Institute)

Abstract

Boron neutron capture therapy (BNCT) was clinically approved in 2020 and exhibits remarkable tumour rejection in preclinical and clinical studies. It is binary radiotherapy that may selectively deposit two deadly high-energy particles (4He and 7Li) within a cancer cell. As a radiotherapy induced by localized nuclear reaction, few studies have reported its abscopal anti-tumour effect, which has limited its further clinical applications. Here, we engineer a neutron-activated boron capsule that synergizes BNCT and controlled immune adjuvants release to provoke a potent anti-tumour immune response. This study demonstrates that boron neutron capture nuclear reaction forms considerable defects in boron capsule that augments the drug release. The following single-cell sequencing unveils the fact and mechanism that BNCT heats anti-tumour immunity. In female mice tumour models, BNCT and the controlled drug release triggered by localized nuclear reaction causes nearly complete regression of both primary and distant tumour grafts.

Suggested Citation

  • Yaxin Shi & Zhibin Guo & Qiang Fu & Xinyuan Shen & Zhongming Zhang & Wenjia Sun & Jinqiang Wang & Junliang Sun & Zizhu Zhang & Tong Liu & Zhen Gu & Zhibo Liu, 2023. "Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37253-x
    DOI: 10.1038/s41467-023-37253-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37253-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37253-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter C. John & Yanfei Guan & Yeonjoon Kim & Seonah Kim & Robert S. Paton, 2020. "Publisher Correction: Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    2. Guiyang Zhang & Xinle Li & Qiaobo Liao & Yanfeng Liu & Kai Xi & Wenyu Huang & Xudong Jia, 2018. "Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Qinyang Wang & Yupeng Wang & Jingjin Ding & Chunhong Wang & Xuehan Zhou & Wenqing Gao & Huanwei Huang & Feng Shao & Zhibo Liu, 2020. "A bioorthogonal system reveals antitumour immune function of pyroptosis," Nature, Nature, vol. 579(7799), pages 421-426, March.
    4. Peter C. St. John & Yanfei Guan & Yeonjoon Kim & Seonah Kim & Robert S. Paton, 2020. "Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Li-Chiang Lin & Jeffrey C. Grossman, 2015. "Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomin Shu & De Zhong & Qian Huang & Leitao Huan & Haohua Huo, 2023. "Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Li, Chong & Zhang, Zhenpeng & He, Li & Ye, Mingzhi & Ning, Hongbo & Shang, Yanlei & Shi, Jinchun & Luo, Sheng-Nian, 2022. "Experimental and kinetic modeling study on the ignition characteristics of methyl acrylate and vinyl acetate: Effect of CC double bond," Energy, Elsevier, vol. 245(C).
    3. Keji Yu & Richard A. Dixon & Changqing Duan, 2022. "A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Yuanyuan Jiang & Zongwei Yang & Jiali Guo & Hongzhen Li & Yijing Liu & Yanzhi Guo & Menglong Li & Xuemei Pu, 2021. "Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Xianghan Zhang & Jingkai Gao & Yingdi Tang & Jie Yu & Si Si Liew & Chaoqiang Qiao & Yutian Cao & Guohuan Liu & Hongyu Fan & Yuqiong Xia & Jie Tian & Kanyi Pu & Zhongliang Wang, 2022. "Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Jing Lin & Shihui Sun & Kui Zhao & Fei Gao & Renling Wang & Qi Li & Yanlong Zhou & Jing Zhang & Yue Li & Xinyue Wang & Le Du & Shuai Wang & Zi Li & Huijun Lu & Yungang Lan & Deguang Song & Wei Guo & Y, 2023. "Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Yuan Lu & Wenbo He & Xin Huang & Yu He & Xiaojuan Gou & Xiaoke Liu & Zhe Hu & Weize Xu & Khaista Rahman & Shan Li & Sheng Hu & Jie Luo & Gang Cao, 2021. "Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    12. Andrzej Olejniczak & Ruslan A. Rymzhanov, 2023. "From nanohole to ultralong straight nanochannel fabrication in graphene oxide with swift heavy ions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Fengqiao Li & Xue-Qing Zhang & William Ho & Maoping Tang & Zhongyu Li & Lei Bu & Xiaoyang Xu, 2023. "mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Stefania A. Mari & Kristyna Pluhackova & Joka Pipercevic & Matthew Leipner & Sebastian Hiller & Andreas Engel & Daniel J. Müller, 2022. "Gasdermin-A3 pore formation propagates along variable pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37253-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.