IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027415.html
   My bibliography  Save this article

Study on the effect of valve openings and multi-stage throttling structures on the pressure and temperature during CO2 pipeline venting processes

Author

Listed:
  • Yu, Shuai
  • Yan, Xingqing
  • He, Yifan
  • Hu, Yanwei
  • Qiao, Fanfan
  • Yang, Kai
  • Cao, Zhangao
  • Chen, Lei
  • Liu, Zhenxi
  • Yu, Jianliang
  • Chen, Shaoyun

Abstract

The venting operation is an important measure for rapidly eliminating the risk of overpressure in CO2 transportation pipelines. However, the low-temperature phenomenon and vibration generated by the rapid discharge can affect structural reliability. Multi-stage throttle structures have been proven to effectively alleviate vibration phenomena, but their impact on low temperatures remains unclear. In this study, venting tests were conducted on eight groups of single-stage and two-stage throttle structures based on a large-scale pipeline. The results indicate that the nonlinear variation of the valve resistance coefficient when the valve opening changes is the fundamental reason affecting the downstream temperature. Two-stage throttle structures can effectively mitigate the low-temperature conditions in certain spaces within the pipeline. For the remaining low-temperature sections, three-stage throttle structures can provide effective compensation. However, this significantly reduces the pressure drop rate in the main pipeline, contradicting the original purpose of the venting operation. Additionally, considering the temperature of the throttle structure and the pressure within the main pipeline, this study recommends increasing the valve openings for the two-stage throttle structure. The results of this study provide important references for the design of throttle structures and the formulation of on-site venting schemes, with strong prospects for engineering applications.

Suggested Citation

  • Yu, Shuai & Yan, Xingqing & He, Yifan & Hu, Yanwei & Qiao, Fanfan & Yang, Kai & Cao, Zhangao & Chen, Lei & Liu, Zhenxi & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the effect of valve openings and multi-stage throttling structures on the pressure and temperature during CO2 pipeline venting processes," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027415
    DOI: 10.1016/j.energy.2024.132967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
    2. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    3. Elshahomi, Alhoush & Lu, Cheng & Michal, Guillaume & Liu, Xiong & Godbole, Ajit & Venton, Philip, 2015. "Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state," Applied Energy, Elsevier, vol. 140(C), pages 20-32.
    4. Yeon-Hee Kim & Seung-Ki Min & Nathan P. Gillett & Dirk Notz & Elizaveta Malinina, 2023. "Observationally-constrained projections of an ice-free Arctic even under a low emission scenario," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    6. Gale, John & Davison, John, 2004. "Transmission of CO2—safety and economic considerations," Energy, Elsevier, vol. 29(9), pages 1319-1328.
    7. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    8. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    9. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Hu, Yanwei & Yang, Kai & Cao, Zhangao & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: Experiments and mechanism analysis," Energy, Elsevier, vol. 296(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shuai & Yan, Xingqing & He, Yifan & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage," Energy, Elsevier, vol. 288(C).
    2. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Hu, Yanwei & Yang, Kai & Cao, Zhangao & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: Experiments and mechanism analysis," Energy, Elsevier, vol. 296(C).
    3. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Yu, Jianliang & Chen, Shaoyun, 2024. "Establishment of a one-dimensional model for CO2 Pipeline rupture process and design recommendations," Energy, Elsevier, vol. 308(C).
    4. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    5. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    6. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    7. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    8. Dall’Acqua, D. & Terenzi, A. & Leporini, M. & D’Alessandro, V. & Giacchetta, G. & Marchetti, B., 2017. "A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state," Applied Energy, Elsevier, vol. 206(C), pages 1432-1445.
    9. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    10. Matteo Vitali & Cristina Zuliani & Francesco Corvaro & Barbara Marchetti & Alessandro Terenzi & Fabrizio Tallone, 2021. "Risks and Safety of CO 2 Transport via Pipeline: A Review of Risk Analysis and Modeling Approaches for Accidental Releases," Energies, MDPI, vol. 14(15), pages 1-17, July.
    11. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    12. Zhu, Jianlu & Wu, Jialing & Xie, Naiya & Li, Zihe & Hu, Qihui & Li, Yuxing, 2024. "Study on water hammer phase transition characteristics of dense/liquid phase CO2 pipeline," Energy, Elsevier, vol. 311(C).
    13. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    14. Morven Muilwijk & Tore Hattermann & Torge Martin & Mats A. Granskog, 2024. "Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
    16. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    17. Uddin, Sk Noim & Barreto, Leonardo, 2007. "Biomass-fired cogeneration systems with CO2 capture and storage," Renewable Energy, Elsevier, vol. 32(6), pages 1006-1019.
    18. van Heek, Julia & Arning, Katrin & Ziefle, Martina, 2017. "Reduce, reuse, recycle: Acceptance of CO2-utilization for plastic products," Energy Policy, Elsevier, vol. 105(C), pages 53-66.
    19. Liangying Zeng & Yao Ha & Chuanfeng Zhao & Haixia Dai & Yimin Zhu & Yijia Hu & Xiaoyu Zhu & Zhiyuan Ding & Yudi Liu & Zhong Zhong, 2024. "Tropical cyclone activity over western North Pacific favors Arctic sea ice increase," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Linton, Valerie, 2019. "Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies," Applied Energy, Elsevier, vol. 250(C), pages 32-47.

    More about this item

    Keywords

    CCUS; CO2 pipeline; Venting operation; Ball valve; Throttle;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.