IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50874-0.html
   My bibliography  Save this article

Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up

Author

Listed:
  • Morven Muilwijk

    (Fram Centre)

  • Tore Hattermann

    (Fram Centre
    UiT - The Arctic University of Norway)

  • Torge Martin

    (GEOMAR Helmholtz Centre for Ocean Research)

  • Mats A. Granskog

    (Fram Centre)

Abstract

Arctic sea ice mediates atmosphere-ocean momentum transfer, which drives upper ocean circulation. How Arctic Ocean surface stress and velocity respond to sea ice decline and changing winds under global warming is unclear. Here we show that state-of-the-art climate models consistently predict an increase in future (2015–2100) ocean surface stress in response to increased surface wind speed, declining sea ice area, and a weaker ice pack. While wind speeds increase most during fall (+2.2% per decade), surface stress rises most in winter (+5.1% per decade) being amplified by reduced internal ice stress. This is because, as sea ice concentration decreases in a warming climate, less energy is dissipated by the weaker ice pack, resulting in more momentum transfer to the ocean. The increased momentum transfer accelerates Arctic Ocean surface velocity (+31–47% by 2100), leading to elevated ocean kinetic energy and enhanced vertical mixing. The enhanced surface stress also increases the Beaufort Gyre Ekman convergence and freshwater content, impacting Arctic marine ecosystems and the downstream ocean circulation. The impacts of projected changes are profound, but different and simplified model formulations of atmosphere-ice-ocean momentum transfer introduce considerable uncertainty, highlighting the need for improved coupling in climate models.

Suggested Citation

  • Morven Muilwijk & Tore Hattermann & Torge Martin & Mats A. Granskog, 2024. "Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50874-0
    DOI: 10.1038/s41467-024-50874-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50874-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50874-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katherine R. Barnhart & Christopher R. Miller & Irina Overeem & Jennifer E. Kay, 2016. "Mapping the future expansion of Arctic open water," Nature Climate Change, Nature, vol. 6(3), pages 280-285, March.
    2. Hiroshi Sumata & Laura Steur & Dmitry V. Divine & Mats A. Granskog & Sebastian Gerland, 2023. "Regime shift in Arctic Ocean sea ice thickness," Nature, Nature, vol. 615(7952), pages 443-449, March.
    3. Yeon-Hee Kim & Seung-Ki Min & Nathan P. Gillett & Dirk Notz & Elizaveta Malinina, 2023. "Observationally-constrained projections of an ice-free Arctic even under a low emission scenario," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuya Wang & Minghu Ding & Yuande Yang & Ting Wei & Tingfeng Dou, 2022. "Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    2. Abhik Chakraborty, 2024. "Emplacing Ecological Grief in Last Chance Tourism: Cryospheric Change and Travel in the Arctic," Tourism and Hospitality, MDPI, vol. 5(2), pages 1-15, June.
    3. Xuan Shan & Shantong Sun & Lixin Wu & Michael Spall, 2024. "Role of the Labrador Current in the Atlantic Meridional Overturning Circulation response to greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. S. B. Cornish & H. L. Johnson & R. D. C. Mallett & J. Dörr & Y. Kostov & A. E. Richards, 2022. "Rise and fall of sea ice production in the Arctic Ocean’s ice factories," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Binhe Luo & Dehai Luo & Aiguo Dai & Cunde Xiao & Ian Simmonds & Edward Hanna & James Overland & Jiaqi Shi & Xiaodan Chen & Yao Yao & Wansuo Duan & Yimin Liu & Qiang Zhang & Xiyan Xu & Yina Diao & Zhin, 2024. "Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Lamentillo, Anna Mae Yu, 2024. "A price tag on pollution: the case on carbon pricing," LSE Research Online Documents on Economics 122913, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50874-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.