IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1275-1306.html
   My bibliography  Save this article

Linear censored quantile regression: A novel minimum‐distance approach

Author

Listed:
  • Mickaël De Backer
  • Anouar El Ghouch
  • Ingrid Van Keilegom

Abstract

In this article, we investigate a new procedure for the estimation of a linear quantile regression with possibly right‐censored responses. Contrary to the main literature on the subject, we propose in this context to circumvent the formulation of conditional quantiles through the so‐called “check” loss function that stems from the influential work of Koenker and Bassett (1978). Instead, our suggestion is here to estimate the quantile coefficients by minimizing an alternative measure of distance. In fact, our approach could be qualified as a generalization in a parametric regression framework of the technique consisting in inverting the conditional distribution of the response given the covariates. This is motivated by the knowledge that the main literature for censored data already relies on some nonparametric conditional distribution estimation as well. The ideas of effective dimension reduction are then exploited in order to accommodate for higher dimensional settings as well in this context. Extensive numerical results then suggest that such an approach provides a strongly competitive procedure to the classical approaches based on the check function, in fact both for complete and censored observations. From a theoretical prospect, both consistency and asymptotic normality of the proposed estimator for linear regression are obtained under classical regularity conditions. As a by‐product, several asymptotic results on some “double‐kernel” version of the conditional Kaplan–Meier distribution estimator based on effective dimension reduction, and its corresponding density estimator, are also obtained and may be of interest on their own. A brief application of our procedure to quasar data then serves to further highlight the relevance of the latter for quantile regression estimation with censored data.

Suggested Citation

  • Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1275-1306
    DOI: 10.1111/sjos.12475
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12475
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lindgren, Anna, 1997. "Quantile regression with censored data using generalized L1 minimization," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 509-524, February.
    2. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    3. Koenker R. & Geling O., 2001. "Reappraising Medfly Longevity: A Quantile Regression Survival Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 458-468, June.
    4. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2019. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Reprints ISBA 2019054, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Ingrid Van Keilegom & Noël Veraverbeke, 1997. "Estimation and Bootstrap with Censored Data in Fixed Design Nonparametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 467-491, September.
    7. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    8. Yannis Bilias & Roger Koenker, 2001. "Quantile regression for duration data: A reappraisal of the Pennsylvania Reemployment Bonus Experiments," Empirical Economics, Springer, vol. 26(1), pages 199-220.
    9. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    10. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    11. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    12. James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
    13. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    14. Cédric Heuchenne & Ingrid Keilegom, 2007. "Polynomial Regression with Censored Data based on Preliminary Nonparametric Estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 273-297, June.
    15. Xia, Yingcun & Zhang, Dixin & Xu, Jinfeng, 2010. "Dimension Reduction and Semiparametric Estimation of Survival Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 278-290.
    16. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2019. "An Adapted Loss Function for Censored Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1126-1137, July.
    17. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.
    18. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    19. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    20. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    21. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    2. Worku Biyadgie Ewnetu & Irène Gijbels & Anneleen Verhasselt, 2024. "Two-piece distribution based semi-parametric quantile regression for right censored data," Statistical Papers, Springer, vol. 65(5), pages 2775-2810, July.
    3. Lorenzo Tedesco & Jad Beyhum & Ingrid Van Keilegom, 2023. "Instrumental variable estimation of the proportional hazards model by presmoothing," Papers 2309.02183, arXiv.org.
    4. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2019. "Weighted quantile regression for censored data with application to export duration data," Statistical Papers, Springer, vol. 60(4), pages 1161-1192, August.
    3. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    4. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    5. Elke Lüdemann & Ralf Wilke & Xuan Zhang, 2006. "Censored quantile regressions and the length of unemployment periods in West Germany," Empirical Economics, Springer, vol. 31(4), pages 1003-1024, November.
    6. Chen, Songnian, 2019. "Quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 209(1), pages 1-17.
    7. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2016. "Semiparametric Copula Quantile Regression for Complete or Censored Data," LIDAM Discussion Papers ISBA 2016009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    9. Akram Yazdani & Hojjat Zeraati & Mehdi Yaseri & Shahpar Haghighat & Ahmad Kaviani, 2022. "Laplace regression with clustered censored data," Computational Statistics, Springer, vol. 37(3), pages 1041-1068, July.
    10. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    11. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
    12. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    13. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    14. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    15. Eliana Christou & Michael G. Akritas, 2019. "Single index quantile regression for censored data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 655-678, December.
    16. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    17. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
    18. Marcelo Cajias & Philipp Freudenreich & Anna Freudenreich, 2020. "Exploring the determinants of real estate liquidity from an alternative perspective: censored quantile regression in real estate research," Journal of Business Economics, Springer, vol. 90(7), pages 1057-1086, August.
    19. Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
    20. Chen, Songnian, 2023. "Two-step estimation of censored quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 1310-1336.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1275-1306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.