IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28047-8.html
   My bibliography  Save this article

Recent upper Arctic Ocean warming expedited by summertime atmospheric processes

Author

Listed:
  • Zhe Li

    (University of California, Santa Barbara)

  • Qinghua Ding

    (University of California, Santa Barbara)

  • Michael Steele

    (University of Washington)

  • Axel Schweiger

    (University of Washington)

Abstract

The observed upper (0–50 m) Arctic Ocean warming since 1979 has been primarily attributed to anthropogenically driven changes in the high latitudes. Here, using both observational and modeling analyses, we demonstrate that a multiyear trend in the summertime large-scale atmospheric circulation, which we ascribe to internal variability, has played an important role in upper ocean warming in summer and fall over the past four decades due to sea ice-albedo effect induced by atmospheric dynamics. Nudging experiments in which the wind fields are constrained toward the observed state support this mechanism and suggest that the internal variability contribution to recent upper Arctic Ocean warming accounts for up to one quarter of warming over the past four decades and up to 60% of warming from 2000 to 2018. This suggests that climate models need to replicate this important internal process in order to realistically simulate Arctic Ocean temperature variability and trends.

Suggested Citation

  • Zhe Li & Qinghua Ding & Michael Steele & Axel Schweiger, 2022. "Recent upper Arctic Ocean warming expedited by summertime atmospheric processes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28047-8
    DOI: 10.1038/s41467-022-28047-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28047-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28047-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangying Zeng & Yao Ha & Chuanfeng Zhao & Haixia Dai & Yimin Zhu & Yijia Hu & Xiaoyu Zhu & Zhiyuan Ding & Yudi Liu & Zhong Zhong, 2024. "Tropical cyclone activity over western North Pacific favors Arctic sea ice increase," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhibiao Wang & Qinghua Ding & Renguang Wu & Thomas J. Ballinger & Bin Guan & Deniz Bozkurt & Deanna Nash & Ian Baxter & Dániel Topál & Zhe Li & Gang Huang & Wen Chen & Shangfeng Chen & Xi Cao & Zhang , 2024. "Role of atmospheric rivers in shaping long term Arctic moisture variability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Dániel Topál & Qinghua Ding & Thomas J. Ballinger & Edward Hanna & Xavier Fettweis & Zhe Li & Ildikó Pieczka, 2022. "Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Andrea Storto & Chunxue Yang, 2024. "Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28047-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.