IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v509y2014i7499d10.1038_nature13260.html
   My bibliography  Save this article

Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland

Author

Listed:
  • Qinghua Ding

    (University of Washington)

  • John M. Wallace

    (University of Washington)

  • David S. Battisti

    (University of Washington)

  • Eric J. Steig

    (University of Washington)

  • Ailie J. E. Gallant

    (School of Geography and Environmental Science, Monash University, Victoria 3800, Australia)

  • Hyung-Jin Kim

    (APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan 612-020, South Korea)

  • Lei Geng

    (University of Washington)

Abstract

Human-induced climate change is usually assumed to be responsible for the dramatic thawing of glaciers since the mid 1990s in Greenland and northeastern Canada; approximately half of the observed warming in this region during this period is now found to be attributable to atmospheric circulation changes that may be of natural origin.

Suggested Citation

  • Qinghua Ding & John M. Wallace & David S. Battisti & Eric J. Steig & Ailie J. E. Gallant & Hyung-Jin Kim & Lei Geng, 2014. "Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland," Nature, Nature, vol. 509(7499), pages 209-212, May.
  • Handle: RePEc:nat:nature:v:509:y:2014:i:7499:d:10.1038_nature13260
    DOI: 10.1038/nature13260
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13260
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Wang & Pengcheng Yan & Taichen Feng & Fei Ji & Shankai Tang & Guolin Feng, 2021. "Detection of anthropogenically driven trends in Arctic amplification," Climatic Change, Springer, vol. 169(3), pages 1-17, December.
    2. Dániel Topál & Qinghua Ding & Thomas J. Ballinger & Edward Hanna & Xavier Fettweis & Zhe Li & Ildikó Pieczka, 2022. "Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Lifei Lin & Chundi Hu & Bin Wang & Renguang Wu & Zeming Wu & Song Yang & Wenju Cai & Peiliang Li & Xuejun Xiong & Dake Chen, 2024. "Atlantic origin of the increasing Asian westerly jet interannual variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Behnam Khorrami & Shoaib Ali & Orhan Gündüz, 2023. "Investigating the Local-scale Fluctuations of Groundwater Storage by Using Downscaled GRACE/GRACE-FO JPL Mascon Product Based on Machine Learning (ML) Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3439-3456, July.
    6. Botao Zhou & Ziyi Song & Zhicong Yin & Xinping Xu & Bo Sun & Pangchi Hsu & Haishan Chen, 2024. "Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:509:y:2014:i:7499:d:10.1038_nature13260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.