IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i1p4-15.html
   My bibliography  Save this article

Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards

Author

Listed:
  • Roshanak Nateghi
  • Seth D. Guikema
  • Yue (Grace) Wu
  • C. Bayan Bruss

Abstract

The U.S. federal government regulates the reliability of bulk power systems, while the reliability of power distribution systems is regulated at a state level. In this article, we review the history of regulating electric service reliability and study the existing reliability metrics, indices, and standards for power transmission and distribution networks. We assess the foundations of the reliability standards and metrics, discuss how they are applied to outages caused by large exogenous disturbances such as natural disasters, and investigate whether the standards adequately internalize the impacts of these events. Our reflections shed light on how existing standards conceptualize reliability, question the basis for treating large‐scale hazard‐induced outages differently from normal daily outages, and discuss whether this conceptualization maps well onto customer expectations. We show that the risk indices for transmission systems used in regulating power system reliability do not adequately capture the risks that transmission systems are prone to, particularly when it comes to low‐probability high‐impact events. We also point out several shortcomings associated with the way in which regulators require utilities to calculate and report distribution system reliability indices. We offer several recommendations for improving the conceptualization of reliability metrics and standards. We conclude that while the approaches taken in reliability standards have made considerable advances in enhancing the reliability of power systems and may be logical from a utility perspective during normal operation, existing standards do not provide a sufficient incentive structure for the utilities to adequately ensure high levels of reliability for end‐users, particularly during large‐scale events.

Suggested Citation

  • Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:1:p:4-15
    DOI: 10.1111/risa.12401
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12401
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guikema, Seth D. & Aven, Terje, 2010. "Assessing risk from intelligent attacks: A perspective on approaches," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 478-483.
    2. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    3. Liu, Haibin & Davidson, Rachel A. & Apanasovich, Tatiyana V., 2008. "Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 897-912.
    4. James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
    5. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    6. Lyons, Cristin & Jacobi, Jere & Starkweather, Rick, 2008. "NERC Standards and Standards Compliance: Still a Work in Progress?," The Electricity Journal, Elsevier, vol. 21(3), pages 29-39, April.
    7. Roshanak Nateghi & Seth D. Guikema & Steven M. Quiring, 2011. "Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1897-1906, December.
    8. Kirschen, Daniel & Strbac, Goran, 2004. "Why Investments Do Not Prevent Blackouts," The Electricity Journal, Elsevier, vol. 17(2), pages 29-36, March.
    9. Aven, Terje, 2008. "A semi-quantitative approach to risk analysis, as an alternative to QRAs," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 790-797.
    10. Vicki M. Bier & Shi‐Woei Lin, 2013. "On the Treatment of Uncertainty and Variability in Making Decisions About Risk," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1899-1907, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian K. Harte & Umesh Kumar, 2020. "Electric Power Grid Disruptions: A Time Series Examination," Journal of Critical Infrastructure Policy, John Wiley & Sons, vol. 1(2), pages 197-216, September.
    2. Abdin, Islam & Li, Yan-Fu & Zio, Enrico, 2017. "Risk assessment of power transmission network failures in a uniform pricing electricity market environment," Energy, Elsevier, vol. 138(C), pages 1042-1055.
    3. Sayanti Mukherjee & Roshanak Nateghi, 2019. "A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 673-694, March.
    4. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    5. Renee Obringer & Rohini Kumar & Roshanak Nateghi, 2020. "Managing the water–electricity demand nexus in a warming climate," Climatic Change, Springer, vol. 159(2), pages 233-252, March.
    6. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
    7. Sanya Carley & Stephen Ansolabehere & David M Konisky, 2019. "Are all electrons the same? Evaluating support for local transmission lines through an experiment," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Seongmun & Jufri, Fauzan Hanif & Choi, Min-Hee & Jung, Jaesung, 2022. "A study of tropical cyclone impact on the power distribution grid in South Korea for estimating damage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    4. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    5. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    8. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    9. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    10. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    11. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    13. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Askeland, Tore & Flage, Roger & Aven, Terje, 2017. "Moving beyond probabilities – Strength of knowledge characterisations applied to security," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 196-205.
    15. Seth D. Guikema & Steven M. Quiring & Seung‐Ryong Han, 2010. "Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1744-1752, December.
    16. Pugatch, Todd, 2019. "Tropical storms and mortality under climate change," World Development, Elsevier, vol. 117(C), pages 172-182.
    17. Ilan Noy, 2017. "To Leave or Not to Leave? Climate Change, Exit, and Voice on a Pacific Island," CESifo Economic Studies, CESifo Group, vol. 63(4), pages 403-420.
    18. Hui Hou & Shiwen Yu & Hongbin Wang & Yong Huang & Hao Wu & Yan Xu & Xianqiang Li & Hao Geng, 2019. "Risk Assessment and Its Visualization of Power Tower under Typhoon Disaster Based on Machine Learning Algorithms," Energies, MDPI, vol. 12(2), pages 1-23, January.
    19. Akter, Sonia & Mallick, Bishawjit, 2013. "An empirical investigation of socio-economic resilience to natural disasters," MPRA Paper 50375, University Library of Munich, Germany.
    20. Franzke, Christian L.E., 2021. "Towards the development of economic damage functions for weather and climate extremes," Ecological Economics, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:1:p:4-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.