IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47781-9.html
   My bibliography  Save this article

High-entropy engineering of the crystal and electronic structures in a Dirac material

Author

Listed:
  • Antu Laha

    (Pennsylvania State University)

  • Suguru Yoshida

    (Pennsylvania State University
    Pennsylvania State University)

  • Francisco Marques dos Santos Vieira

    (Pennsylvania State University)

  • Hemian Yi

    (Pennsylvania State University)

  • Seng Huat Lee

    (Pennsylvania State University
    Pennsylvania State University)

  • Sai Venkata Gayathri Ayyagari

    (Pennsylvania State University)

  • Yingdong Guan

    (Pennsylvania State University)

  • Lujin Min

    (Pennsylvania State University
    Pennsylvania State University)

  • Jose Gonzalez Jimenez

    (Michigan State University)

  • Leixin Miao

    (Pennsylvania State University)

  • David Graf

    (National High Magnetic Field Laboratory)

  • Saugata Sarker

    (Pennsylvania State University)

  • Weiwei Xie

    (Michigan State University)

  • Nasim Alem

    (Pennsylvania State University)

  • Venkatraman Gopalan

    (Pennsylvania State University)

  • Cui-Zu Chang

    (Pennsylvania State University)

  • Ismaila Dabo

    (Pennsylvania State University
    Pennsylvania State University)

  • Zhiqiang Mao

    (Pennsylvania State University
    Pennsylvania State University
    Pennsylvania State University)

Abstract

Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take the AMnSb2 (A = Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at the A site generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2 (denoted as A5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds. A5MnSb2 is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although both A5MnSb2 and AMnSb2 have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristine AMnSb2 evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov–de Haas oscillations measurements.

Suggested Citation

  • Antu Laha & Suguru Yoshida & Francisco Marques dos Santos Vieira & Hemian Yi & Seng Huat Lee & Sai Venkata Gayathri Ayyagari & Yingdong Guan & Lujin Min & Jose Gonzalez Jimenez & Leixin Miao & David G, 2024. "High-entropy engineering of the crystal and electronic structures in a Dirac material," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47781-9
    DOI: 10.1038/s41467-024-47781-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47781-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47781-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. J. Y. Liu & J. Hu & D. Graf & T. Zou & M. Zhu & Y. Shi & S. Che & S. M. A. Radmanesh & C. N. Lau & L. Spinu & H. B. Cao & X. Ke & Z. Q. Mao, 2017. "Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    3. Jannik C. Meyer & A. K. Geim & M. I. Katsnelson & K. S. Novoselov & T. J. Booth & S. Roth, 2007. "The structure of suspended graphene sheets," Nature, Nature, vol. 446(7131), pages 60-63, March.
    4. Christina M. Rost & Edward Sachet & Trent Borman & Ali Moballegh & Elizabeth C. Dickey & Dong Hou & Jacob L. Jones & Stefano Curtarolo & Jon-Paul Maria, 2015. "Entropy-stabilized oxides," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    5. Binbin Jiang & Yong Yu & Hongyi Chen & Juan Cui & Xixi Liu & Lin Xie & Jiaqing He, 2021. "Entropy engineering promotes thermoelectric performance in p-type chalcogenides," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. J. Y. Liu & J. Yu & J. L. Ning & H. M. Yi & L. Miao & L. J. Min & Y. F. Zhao & W. Ning & K. A. Lopez & Y. L. Zhu & T. Pillsbury & Y. B. Zhang & Y. Wang & J. Hu & H. B. Cao & B. C. Chakoumakos & F. Bal, 2021. "Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal BaMnSb2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Leslie M. Schoop & Mazhar N. Ali & Carola Straßer & Andreas Topp & Andrei Varykhalov & Dmitry Marchenko & Viola Duppel & Stuart S. P. Parkin & Bettina V. Lotsch & Christian R. Ast, 2016. "Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Fu & Aiwen Xie & Ruzhong Zuo & Yiqian Liu & He Qi & Zongqian Wang & Quan Feng & Jinming Guo & Kun Zeng & Xuefeng Chen & Zhengqian Fu & Yifan Zhang & Xuewen Jiang & Tianyu Li & Shujun Zhang & Yuan, 2024. "A highly polarizable concentrated dipole glass for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lujin Min & Hengxin Tan & Zhijian Xie & Leixin Miao & Ruoxi Zhang & Seng Huat Lee & Venkatraman Gopalan & Chao-Xing Liu & Nasim Alem & Binghai Yan & Zhiqiang Mao, 2023. "Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    6. Hoil Kim & Jong Mok Ok & Seyeong Cha & Bo Gyu Jang & Chang Il Kwon & Yoshimitsu Kohama & Koichi Kindo & Won Joon Cho & Eun Sang Choi & Youn Jung Jo & Woun Kang & Ji Hoon Shim & Keun Su Kim & Jun Sung , 2022. "Quantum transport evidence of isolated topological nodal-line fermions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Sung-Kyun Jung & Hyeokjo Gwon & Hyungsub Kim & Gabin Yoon & Dongki Shin & Jihyun Hong & Changhoon Jung & Ju-Sik Kim, 2022. "Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Spinelli, Giovanni & Lamberti, Patrizia & Tucci, Vincenzo & Pasadas, Francisco & Jiménez, David, 2021. "Sensitivity analysis of a Graphene Field-Effect Transistors by means of Design of Experiments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 187-197.
    10. Ma, Yu-Lan & Li, Bang-Qing, 2018. "The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 169-174.
    11. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Martina Fracchia & Mauro Coduri & Maela Manzoli & Paolo Ghigna & Umberto Anselmi Tamburini, 2022. "Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide?," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    13. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Kaatz, Forrest H. & Estrada, Ernesto & Bultheel, Adhemar & Sharrock, Noel, 2012. "Statistical mechanics of two dimensional tilings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(10), pages 2957-2963.
    15. Siyang Nie & Liang Wu & Qinghua Zhang & Yunwei Huang & Qingda Liu & Xun Wang, 2024. "High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Z. F. Wu & P. Z. Sun & O. J. Wahab & Y. T. Tan & D. Barry & D. Periyanagounder & P. B. Pillai & Q. Dai & W. Q. Xiong & L. F. Vega & K. Lulla & S. J. Yuan & R. R. Nair & E. Daviddi & P. R. Unwin & A. K, 2023. "Proton and molecular permeation through the basal plane of monolayer graphene oxide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Yanzhi Wang & Hangjuan He & Hao Lv & Fengrui Jia & Ben Liu, 2024. "Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Wei Chen & Antoine Hilhorst & Georgios Bokas & Stéphane Gorsse & Pascal J. Jacques & Geoffroy Hautier, 2023. "A map of single-phase high-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Zongyao Zhou & Kangning Zhao & Heng-Yu Chi & Yueqing Shen & Shuqing Song & Kuang-Jung Hsu & Mojtaba Chevalier & Wenxiong Shi & Kumar Varoon Agrawal, 2024. "Electrochemical-repaired porous graphene membranes for precise ion-ion separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47781-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.