IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28860-1.html
   My bibliography  Save this article

Antiferroelectric negative capacitance from a structural phase transition in zirconia

Author

Listed:
  • Michael Hoffmann

    (NaMLab gGmbH
    University of California)

  • Zheng Wang

    (Georgia Institute of Technology)

  • Nujhat Tasneem

    (Georgia Institute of Technology)

  • Ahmad Zubair

    (Massachusetts Institute of Technology)

  • Prasanna Venkatesan Ravindran

    (Georgia Institute of Technology)

  • Mengkun Tian

    (Georgia Institute of Technology)

  • Anthony Arthur Gaskell

    (Georgia Institute of Technology)

  • Dina Triyoso

    (TEL Technology Center, America, LLC)

  • Steven Consiglio

    (TEL Technology Center, America, LLC)

  • Kandabara Tapily

    (TEL Technology Center, America, LLC)

  • Robert Clark

    (TEL Technology Center, America, LLC)

  • Jae Hur

    (Georgia Institute of Technology)

  • Sai Surya Kiran Pentapati

    (Georgia Institute of Technology)

  • Sung Kyu Lim

    (Georgia Institute of Technology)

  • Milan Dopita

    (Charles University)

  • Shimeng Yu

    (Georgia Institute of Technology)

  • Winston Chern

    (Massachusetts Institute of Technology
    Izentis LLC)

  • Josh Kacher

    (Georgia Institute of Technology)

  • Sebastian E. Reyes-Lillo

    (Universidad Andres Bello)

  • Dimitri Antoniadis

    (Massachusetts Institute of Technology)

  • Jayakanth Ravichandran

    (University of Southern California)

  • Stefan Slesazeck

    (NaMLab gGmbH)

  • Thomas Mikolajick

    (NaMLab gGmbH
    TU Dresden)

  • Asif Islam Khan

    (Georgia Institute of Technology
    Georgia Institute of Technology)

Abstract

Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2 and ZrO2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.

Suggested Citation

  • Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28860-1
    DOI: 10.1038/s41467-022-28860-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28860-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28860-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ajay K. Yadav & Kayla X. Nguyen & Zijian Hong & Pablo García-Fernández & Pablo Aguado-Puente & Christopher T. Nelson & Sujit Das & Bhagwati Prasad & Daewoong Kwon & Suraj Cheema & Asif I. Khan & Chenm, 2019. "Spatially resolved steady-state negative capacitance," Nature, Nature, vol. 565(7740), pages 468-471, January.
    2. Michael Hoffmann & Franz P. G. Fengler & Melanie Herzig & Terence Mittmann & Benjamin Max & Uwe Schroeder & Raluca Negrea & Pintilie Lucian & Stefan Slesazeck & Thomas Mikolajick, 2019. "Unveiling the double-well energy landscape in a ferroelectric layer," Nature, Nature, vol. 565(7740), pages 464-467, January.
    3. Bin Xu & Jorge Íñiguez & L. Bellaiche, 2017. "Designing lead-free antiferroelectrics for energy storage," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    4. Pavlo Zubko & Jacek C. Wojdeł & Marios Hadjimichael & Stéphanie Fernandez-Pena & Anaïs Sené & Igor Luk’yanchuk & Jean-Marc Triscone & Jorge Íñiguez, 2016. "Negative capacitance in multidomain ferroelectric superlattices," Nature, Nature, vol. 534(7608), pages 524-528, June.
    5. A. K. Tagantsev & K. Vaideeswaran & S. B. Vakhrushev & A. V. Filimonov & R. G. Burkovsky & A. Shaganov & D. Andronikova & A. I. Rudskoy & A. Q. R. Baron & H. Uchiyama & D. Chernyshov & A. Bosak & Z. U, 2013. "The origin of antiferroelectricity in PbZrO3," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    6. Ajay K. Yadav & Kayla X. Nguyen & Zijian Hong & Pablo García-Fernández & Pablo Aguado-Puente & Christopher T. Nelson & Sujit Das & Bhagwati Prasad & Daewoong Kwon & Suraj Cheema & Asif I. Khan & Chenm, 2019. "Author Correction: Spatially resolved steady-state negative capacitance," Nature, Nature, vol. 568(7753), pages 13-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Sandhya Susarla & Pablo García-Fernández & Colin Ophus & Sujit Das & Pablo Aguado-Puente & Margaret McCarter & Peter Ercius & Lane W. Martin & Ramamoorthy Ramesh & Javier Junquera, 2021. "Atomic scale crystal field mapping of polar vortices in oxide superlattices," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Mingqiang Li & Tiannan Yang & Pan Chen & Yongjun Wang & Ruixue Zhu & Xiaomei Li & Ruochen Shi & Heng-Jui Liu & Yen-Lin Huang & Xiumei Ma & Jingmin Zhang & Xuedong Bai & Long-Qing Chen & Ying-Hao Chu &, 2022. "Electric-field control of the nucleation and motion of isolated three-fold polar vertices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Kook Tae Kim & Margaret R. McCarter & Vladimir A. Stoica & Sujit Das & Christoph Klewe & Elizabeth P. Donoway & David M. Burn & Padraic Shafer & Fanny Rodolakis & Mauro A. P. Gonçalves & Fernando Góme, 2022. "Chiral structures of electric polarization vectors quantified by X-ray resonant scattering," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Wei Luo & Alireza Akbarzadeh & Yousra Nahas & Sergei Prokhorenko & Laurent Bellaiche, 2023. "Quantum criticality at cryogenic melting of polar bubble lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Chen Lin & Zijun Zhang & Zhenbang Dai & Mengjiao Wu & Shi Liu & Jialu Chen & Chenqiang Hua & Yunhao Lu & Fei Zhang & Hongbo Lou & Hongliang Dong & Qiaoshi Zeng & Jing Ma & Xiaodong Pi & Dikui Zhou & Y, 2023. "Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Mengjiao Han & Cong Wang & Kangdi Niu & Qishuo Yang & Chuanshou Wang & Xi Zhang & Junfeng Dai & Yujia Wang & Xiuliang Ma & Junling Wang & Lixing Kang & Wei Ji & Junhao Lin, 2022. "Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Peng Chen & Charles Paillard & Hong Jian Zhao & Jorge Íñiguez & Laurent Bellaiche, 2022. "Deterministic control of ferroelectric polarization by ultrafast laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Simas, Fabiano C. & Nobrega, K.Z. & Bazeia, D., 2022. "Bifurcation and chaos in one dimensional chains of small particles," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Daniel Bennett & Gaurav Chaudhary & Robert-Jan Slager & Eric Bousquet & Philippe Ghosez, 2023. "Polar meron-antimeron networks in strained and twisted bilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Yulong Huang & Jennifer L. Gottfried & Arpita Sarkar & Gengyi Zhang & Haiqing Lin & Shenqiang Ren, 2023. "Proton-controlled molecular ionic ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Jiaming Liu & Ying Jiang & Weichen Zhang & Xu Cheng & Peiyao Zhao & Yichao Zhen & Yanan Hao & Limin Guo & Ke Bi & Xiaohui Wang, 2024. "Ferroelectric tungsten bronze-based ceramics with high-energy storage performance via weakly coupled relaxor design and grain boundary optimization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Yi Liu & Yu Ma & Xi Zeng & Haojie Xu & Wuqian Guo & Beibei Wang & Lina Hua & Liwei Tang & Junhua Luo & Zhihua Sun, 2023. "A high-temperature double perovskite molecule-based antiferroelectric with excellent anti-breakdown capacity for energy storage," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Mao-Hua Zhang & Hui Ding & Sonja Egert & Changhao Zhao & Lorenzo Villa & Lovro Fulanović & Pedro B. Groszewicz & Gerd Buntkowsky & Hans-Joachim Kleebe & Karsten Albe & Andreas Klein & Jurij Koruza, 2023. "Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Kiumars Aryana & John A. Tomko & Ran Gao & Eric R. Hoglund & Takanori Mimura & Sara Makarem & Alejandro Salanova & Md Shafkat Bin Hoque & Thomas W. Pfeifer & David H. Olson & Jeffrey L. Braun & Joyeet, 2022. "Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3)," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28860-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.