IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52526-9.html
   My bibliography  Save this article

Latent porosity of planar tris(phenylisoxazolyl)benzene

Author

Listed:
  • Yudai Ono

    (Higashi-Hiroshima
    Higashi-Hiroshima)

  • Takehiro Hirao

    (Higashi-Hiroshima)

  • Naomi Kawata

    (Higashi-Hiroshima)

  • Takeharu Haino

    (Higashi-Hiroshima
    Higashi-Hiroshima)

Abstract

Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis- and trans-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis-decalin over trans-decalin with a cis-/trans-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π–π stacking interactions, which determines the remarkable selectivity of molecular recognition.

Suggested Citation

  • Yudai Ono & Takehiro Hirao & Naomi Kawata & Takeharu Haino, 2024. "Latent porosity of planar tris(phenylisoxazolyl)benzene," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52526-9
    DOI: 10.1038/s41467-024-52526-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52526-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52526-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    2. Yasuhide Inokuma & Shota Yoshioka & Junko Ariyoshi & Tatsuhiko Arai & Yuki Hitora & Kentaro Takada & Shigeki Matsunaga & Kari Rissanen & Makoto Fujita, 2013. "X-ray analysis on the nanogram to microgram scale using porous complexes," Nature, Nature, vol. 495(7442), pages 461-466, March.
    3. Yasuhide Inokuma & Shota Yoshioka & Junko Ariyoshi & Tatsuhiko Arai & Yuki Hitora & Kentaro Takada & Shigeki Matsunaga & Kari Rissanen & Makoto Fujita, 2013. "Correction: Corrigendum: X-ray analysis on the nanogram to microgram scale using porous complexes," Nature, Nature, vol. 501(7466), pages 262-262, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Poręba & Piero Macchi & Michelle Ernst, 2022. "Pitfalls in the location of guest molecules in metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    2. Yuki Wada & Pavel M. Usov & Bun Chan & Makoto Mukaida & Ken Ohmori & Yoshio Ando & Haruhiko Fuwa & Hiroyoshi Ohtsu & Masaki Kawano, 2024. "Atomic-resolution structure analysis inside an adaptable porous framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Aziz, Andrew N. & Mahmoud, Saad & Al-Dadah, Raya & Taskin, Anil & Ismail, Mohamed A. & Fahmy, Y.M. & Rashid, Md Mamoon, 2024. "Novel MOF-303/G coated wire-finned heat exchanger for dehumidification applications–Experimental investigation," Energy, Elsevier, vol. 305(C).
    4. Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
    5. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    7. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    8. Chengjun Kang & Kuiwei Yang & Zhaoqiang Zhang & Adam K. Usadi & David C. Calabro & Lisa Saunders Baugh & Yuxiang Wang & Jianwen Jiang & Xiaodong Zou & Zhehao Huang & Dan Zhao, 2022. "Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    11. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    12. J. Perego & Charl X. Bezuidenhout & I. Villa & F. Cova & R. Crapanzano & I. Frank & F. Pagano & N. Kratochwill & E. Auffray & S. Bracco & A. Vedda & C. Dujardin & P. E. Sozzani & F. Meinardi & A. Como, 2022. "Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Zhi-Zhou Ma & Qiao-Hong Li & Zirui Wang & Zhi-Gang Gu & Jian Zhang, 2022. "Electrically regulating nonlinear optical limiting of metal-organic framework film," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    16. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2023. "Insulator-to-metal-like transition in thin films of a biological metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Le Zeng & Tiexin Zhang & Renhai Liu & Wenming Tian & Kaifeng Wu & Jingyi Zhu & Zhonghe Wang & Cheng He & Jing Feng & Xiangyang Guo & Abdoulkader Ibro Douka & Chunying Duan, 2023. "Chalcogen-bridged coordination polymer for the photocatalytic activation of aryl halides," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52526-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.