Thermodynamics-inspired explanations of artificial intelligence
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51970-x
Download full text from publisher
References listed on IDEAS
- Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
- Alex Davies & Petar Veličković & Lars Buesing & Sam Blackwell & Daniel Zheng & Nenad Tomašev & Richard Tanburn & Peter Battaglia & Charles Blundell & András Juhász & Marc Lackenby & Geordie Williamson, 2021. "Advancing mathematics by guiding human intuition with AI," Nature, Nature, vol. 600(7887), pages 70-74, December.
- Andreas Mardt & Luca Pasquali & Hao Wu & Frank Noé, 2018. "Author Correction: VAMPnets for deep learning of molecular kinetics," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
- Andreas Mardt & Luca Pasquali & Hao Wu & Frank Noé, 2018. "VAMPnets for deep learning of molecular kinetics," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Corneel Casert & Isaac Tamblyn & Stephen Whitelam, 2024. "Learning stochastic dynamics and predicting emergent behavior using transformers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Benjamin D Lee & Anthony Gitter & Casey S Greene & Sebastian Raschka & Finlay Maguire & Alexander J Titus & Michael D Kessler & Alexandra J Lee & Marc G Chevrette & Paul Allen Stewart & Thiago Britto-, 2022. "Ten quick tips for deep learning in biology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-20, March.
- Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Yuxuan Zhuang & Rebecca J. Howard & Erik Lindahl, 2024. "Symmetry-adapted Markov state models of closing, opening, and desensitizing in α 7 nicotinic acetylcholine receptors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2023. "A Review of Data‐Driven Discovery for Dynamic Systems," International Statistical Review, International Statistical Institute, vol. 91(3), pages 464-492, December.
- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
- Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
- Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
- Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
- Kai Feng & Han Hong & Ke Tang & Jingyuan Wang, 2023. "Statistical Tests for Replacing Human Decision Makers with Algorithms," Papers 2306.11689, arXiv.org, revised Dec 2024.
- Xiaochen Hu & Xudong Zhang & Nicholas Lovrich, 2021. "Public perceptions of police behavior during traffic stops: logistic regression and machine learning approaches compared," Journal of Computational Social Science, Springer, vol. 4(1), pages 355-380, May.
- Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
- Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023.
"The emergence of economic rationality of GPT,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
- Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The Emergence of Economic Rationality of GPT," Papers 2305.12763, arXiv.org, revised Nov 2023.
- Margrét Vilborg Bjarnadóttir & David B. Anderson & Ritu Agarwal & D. Alan Nelson, 2022. "Aiding the prescriber: developing a machine learning approach to personalized risk modeling for chronic opioid therapy amongst US Army soldiers," Health Care Management Science, Springer, vol. 25(4), pages 649-665, December.
- Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
- Santiago Alonso-Diaz, 2024. "A human-like artificial intelligence for mathematics," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 23(1), pages 79-97, December.
- Xin Li & Qunxi Zhu & Chengli Zhao & Xiaojun Duan & Bolin Zhao & Xue Zhang & Huanfei Ma & Jie Sun & Wei Lin, 2024. "Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
- Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51970-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.