IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34051-9.html
   My bibliography  Save this article

Unsupervised learning of aging principles from longitudinal data

Author

Listed:
  • Konstantin Avchaciov

    (Gero PTE. LTD.)

  • Marina P. Antoch

    (Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center)

  • Ekaterina L. Andrianova

    (Genome Protection, Inc.)

  • Andrei E. Tarkhov

    (Gero PTE. LTD.)

  • Leonid I. Menshikov

    (Gero PTE. LTD.)

  • Olga Burmistrova

    (Gero PTE. LTD.)

  • Andrei V. Gudkov

    (Genome Protection, Inc.
    Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center)

  • Peter O. Fedichev

    (Gero PTE. LTD.)

Abstract

Age is the leading risk factor for prevalent diseases and death. However, the relation between age-related physiological changes and lifespan is poorly understood. We combined analytical and machine learning tools to describe the aging process in large sets of longitudinal measurements. Assuming that aging results from a dynamic instability of the organism state, we designed a deep artificial neural network, including auto-encoder and auto-regression (AR) components. The AR model tied the dynamics of physiological state with the stochastic evolution of a single variable, the “dynamic frailty indicator” (dFI). In a subset of blood tests from the Mouse Phenome Database, dFI increased exponentially and predicted the remaining lifespan. The observation of the limiting dFI was consistent with the late-life mortality deceleration. dFI changed along with hallmarks of aging, including frailty index, molecular markers of inflammation, senescent cell accumulation, and responded to life-shortening (high-fat diet) and life-extending (rapamycin) treatments.

Suggested Citation

  • Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34051-9
    DOI: 10.1038/s41467-022-34051-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34051-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34051-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    2. Marco Baggiolini, 1998. "Chemokines and leukocyte traffic," Nature, Nature, vol. 392(6676), pages 565-568, April.
    3. Andreas Mardt & Luca Pasquali & Hao Wu & Frank Noé, 2018. "VAMPnets for deep learning of molecular kinetics," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Michael B. Schultz & Alice E. Kane & Sarah J. Mitchell & Michael R. MacArthur & Elisa Warner & David S. Vogel & James R. Mitchell & Susan E. Howlett & Michael S. Bonkowski & David A. Sinclair, 2020. "Publisher Correction: Age and life expectancy clocks based on machine learning analysis of mouse frailty," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    5. Bethany Lusch & J. Nathan Kutz & Steven L. Brunton, 2018. "Deep learning for universal linear embeddings of nonlinear dynamics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Jan M. van Deursen, 2014. "The role of senescent cells in ageing," Nature, Nature, vol. 509(7501), pages 439-446, May.
    7. David E. Harrison & Randy Strong & Zelton Dave Sharp & James F. Nelson & Clinton M. Astle & Kevin Flurkey & Nancy L. Nadon & J. Erby Wilkinson & Krystyna Frenkel & Christy S. Carter & Marco Pahor & Ma, 2009. "Rapamycin fed late in life extends lifespan in genetically heterogeneous mice," Nature, Nature, vol. 460(7253), pages 392-395, July.
    8. Andreas Mardt & Luca Pasquali & Hao Wu & Frank Noé, 2018. "Author Correction: VAMPnets for deep learning of molecular kinetics," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    9. Michael B. Schultz & Alice E. Kane & Sarah J. Mitchell & Michael R. MacArthur & Elisa Warner & David S. Vogel & James R. Mitchell & Susan E. Howlett & Michael S. Bonkowski & David A. Sinclair, 2020. "Age and life expectancy clocks based on machine learning analysis of mouse frailty," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shams Mehdi & Pratyush Tiwary, 2024. "Thermodynamics-inspired explanations of artificial intelligence," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Benjamin D Lee & Anthony Gitter & Casey S Greene & Sebastian Raschka & Finlay Maguire & Alexander J Titus & Michael D Kessler & Alexandra J Lee & Marc G Chevrette & Paul Allen Stewart & Thiago Britto-, 2022. "Ten quick tips for deep learning in biology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-20, March.
    3. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Cristal M. Hill & Diana C. Albarado & Lucia G. Coco & Redin A. Spann & Md Shahjalal Khan & Emily Qualls-Creekmore & David H. Burk & Susan J. Burke & J. Jason Collier & Sangho Yu & David H. McDougal & , 2022. "FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2023. "A Review of Data‐Driven Discovery for Dynamic Systems," International Statistical Review, International Statistical Institute, vol. 91(3), pages 464-492, December.
    6. Carolin Thomas & Reto Erni & Jia Yee Wu & Fabian Fischer & Greta Lamers & Giovanna Grigolon & Sarah J. Mitchell & Kim Zarse & Erick M. Carreira & Michael Ristow, 2023. "A naturally occurring polyacetylene isolated from carrots promotes health and delays signatures of aging," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Corneel Casert & Isaac Tamblyn & Stephen Whitelam, 2024. "Learning stochastic dynamics and predicting emergent behavior using transformers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    9. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    10. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    11. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    12. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    13. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    14. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    15. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    16. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    17. Quentin Remy & Julius Hohlfeld & Maxime Vergès & Yann Le Guen & Jon Gorchon & Grégory Malinowski & Stéphane Mangin & Michel Hehn, 2023. "Accelerating ultrafast magnetization reversal by non-local spin transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Silin, Igor & Spokoiny, Vladimir, 2018. "Bayesian inference for spectral projectors of covariance matrix," IRTG 1792 Discussion Papers 2018-027, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    20. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34051-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.