IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45629-w.html
   My bibliography  Save this article

Learning stochastic dynamics and predicting emergent behavior using transformers

Author

Listed:
  • Corneel Casert

    (Lawrence Berkeley National Laboratory
    Ghent University)

  • Isaac Tamblyn

    (Cash App, Block
    Vector Institute for Artificial Intelligence
    University of Ottawa)

  • Stephen Whitelam

    (Lawrence Berkeley National Laboratory)

Abstract

We show that a neural network originally designed for language processing can learn the dynamical rules of a stochastic system by observation of a single dynamical trajectory of the system, and can accurately predict its emergent behavior under conditions not observed during training. We consider a lattice model of active matter undergoing continuous-time Monte Carlo dynamics, simulated at a density at which its steady state comprises small, dispersed clusters. We train a neural network called a transformer on a single trajectory of the model. The transformer, which we show has the capacity to represent dynamical rules that are numerous and nonlocal, learns that the dynamics of this model consists of a small number of processes. Forward-propagated trajectories of the trained transformer, at densities not encountered during training, exhibit motility-induced phase separation and so predict the existence of a nonequilibrium phase transition. Transformers have the flexibility to learn dynamical rules from observation without explicit enumeration of rates or coarse-graining of configuration space, and so the procedure used here can be applied to a wide range of physical systems, including those with large and complex dynamical generators.

Suggested Citation

  • Corneel Casert & Isaac Tamblyn & Stephen Whitelam, 2024. "Learning stochastic dynamics and predicting emergent behavior using transformers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45629-w
    DOI: 10.1038/s41467-024-45629-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45629-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45629-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sun-Ting Tsai & En-Jui Kuo & Pratyush Tiwary, 2020. "Learning molecular dynamics with simple language model built upon long short-term memory neural network," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Andreas Mardt & Luca Pasquali & Hao Wu & Frank Noé, 2018. "Author Correction: VAMPnets for deep learning of molecular kinetics," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Andreas Mardt & Luca Pasquali & Hao Wu & Frank Noé, 2018. "VAMPnets for deep learning of molecular kinetics," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shams Mehdi & Pratyush Tiwary, 2024. "Thermodynamics-inspired explanations of artificial intelligence," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Benjamin D Lee & Anthony Gitter & Casey S Greene & Sebastian Raschka & Finlay Maguire & Alexander J Titus & Michael D Kessler & Alexandra J Lee & Marc G Chevrette & Paul Allen Stewart & Thiago Britto-, 2022. "Ten quick tips for deep learning in biology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-20, March.
    4. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2023. "A Review of Data‐Driven Discovery for Dynamic Systems," International Statistical Review, International Statistical Institute, vol. 91(3), pages 464-492, December.
    6. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45629-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.