IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2576-d1163614.html
   My bibliography  Save this article

Challenges and Opportunities in Machine Learning for Geometry

Author

Listed:
  • Rafael Magdalena-Benedicto

    (Department of Electronic Engineering, University of Valencia, 46010 Valencia, Spain
    These authors contributed equally to this work.)

  • Sonia Pérez-Díaz

    (University of Alcalá, Department of Physics and Mathematics, 28871 Alcalá de Henares, Spain
    These authors contributed equally to this work.)

  • Adrià Costa-Roig

    (Department of Pediatric Surgery, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
    These authors contributed equally to this work.)

Abstract

Over the past few decades, the mathematical community has accumulated a significant amount of pure mathematical data, which has been analyzed through supervised, semi-supervised, and unsupervised machine learning techniques with remarkable results, e.g., artificial neural networks, support vector machines, and principal component analysis. Therefore, we consider as disruptive the use of machine learning algorithms to study mathematical structures, enabling the formulation of conjectures via numerical algorithms. In this paper, we review the latest applications of machine learning in the field of geometry. Artificial intelligence can help in mathematical problem solving, and we predict a blossoming of machine learning applications during the next years in the field of geometry. As a contribution, we propose a new method for extracting geometric information from the point cloud and reconstruct a 2D or a 3D model, based on the novel concept of generalized asymptotes.

Suggested Citation

  • Rafael Magdalena-Benedicto & Sonia Pérez-Díaz & Adrià Costa-Roig, 2023. "Challenges and Opportunities in Machine Learning for Geometry," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2576-:d:1163614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Campo-Montalvo & Marián Fernández de Sevilla & Sonia Pérez-Díaz, 2022. "Asymptotic Behavior of a Surface Implicitly Defined," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    2. Rohan Tahir & Allah Bux Sargano & Zulfiqar Habib, 2021. "Voxel-Based 3D Object Reconstruction from Single 2D Image Using Variational Autoencoders," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    3. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    4. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    5. Alex Davies & Petar Veličković & Lars Buesing & Sam Blackwell & Daniel Zheng & Nenad Tomašev & Richard Tanburn & Peter Battaglia & Charles Blundell & András Juhász & Marc Lackenby & Geordie Williamson, 2021. "Advancing mathematics by guiding human intuition with AI," Nature, Nature, vol. 600(7887), pages 70-74, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    2. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    3. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    4. Rainer Alt, 2021. "Electronic Markets on robotics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 465-471, September.
    5. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    6. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    7. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    8. Regad, L. & Guyon, F. & Maupetit, J. & Tufféry, P. & Camproux, A.C., 2008. "A Hidden Markov Model applied to the protein 3D structure analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3198-3207, February.
    9. Abdulwahhab, Ali H. & Abdulaal, Alaa Hussein & Thary Al-Ghrairi, Assad H. & Mohammed, Ali Abdulwahhab & Valizadeh, Morteza, 2024. "Detection of epileptic seizure using EEG signals analysis based on deep learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    11. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    12. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    13. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    14. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    15. Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
    16. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    17. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    18. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    19. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    20. Thomas Grisold & Christian Janiesch & Maximilian Röglinger & Moe Thandar Wynn, 2022. "Call for Papers, Issue 5/2024," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 841-843, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2576-:d:1163614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.