Aiding the prescriber: developing a machine learning approach to personalized risk modeling for chronic opioid therapy amongst US Army soldiers
Author
Abstract
Suggested Citation
DOI: 10.1007/s10729-022-09605-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
- Justine S. Hastings & Mark Howison & Sarah E. Inman, 2020.
"Predicting high-risk opioid prescriptions before they are given,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(4), pages 1917-1923, January.
- Justine S. Hastings & Mark Howison & Sarah E. Inman, 2019. "Predicting High-Risk Opioid Prescriptions Before they are Given," NBER Working Papers 25791, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Margaret L. Brandeau, 2023. "Responding to the US opioid crisis: leveraging analytics to support decision making," Health Care Management Science, Springer, vol. 26(4), pages 599-603, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
- Michael A. Ribers & Hannes Ullrich, 2019.
"Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?,"
Discussion Papers of DIW Berlin
1803, DIW Berlin, German Institute for Economic Research.
- Michael Allan Ribers & Hannes Ullrich, 2019. "Battling antibiotic resistance: can machine learning improve prescribing?," CESifo Working Paper Series 7654, CESifo.
- Michael Allan Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Papers 1906.03044, arXiv.org.
- Shams Mehdi & Pratyush Tiwary, 2024. "Thermodynamics-inspired explanations of artificial intelligence," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
- Xiaochen Hu & Xudong Zhang & Nicholas Lovrich, 2021. "Public perceptions of police behavior during traffic stops: logistic regression and machine learning approaches compared," Journal of Computational Social Science, Springer, vol. 4(1), pages 355-380, May.
- Wei-Hsuan Lo-Ciganic & James L Huang & Hao H Zhang & Jeremy C Weiss & C Kent Kwoh & Julie M Donohue & Adam J Gordon & Gerald Cochran & Daniel C Malone & Courtney C Kuza & Walid F Gellad, 2020. "Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Michael Allan Ribers & Hannes Ullrich, 2020.
"Machine Predictions and Human Decisions with Variation in Payoffs and Skill,"
CESifo Working Paper Series
8702, CESifo.
- Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skill," Papers 2011.11017, arXiv.org.
- Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skills," Discussion Papers of DIW Berlin 1911, DIW Berlin, German Institute for Economic Research.
- Beau Coker & Cynthia Rudin & Gary King, 2021. "A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results," Management Science, INFORMS, vol. 67(10), pages 6174-6197, October.
- Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
- Kai Feng & Han Hong & Ke Tang & Jingyuan Wang, 2023. "Statistical Tests for Replacing Human Decision Makers with Algorithms," Papers 2306.11689, arXiv.org, revised Dec 2024.
- Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
- Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
- Cynthia Rudin & Berk Ustun, 2018. "Optimized Scoring Systems: Toward Trust in Machine Learning for Healthcare and Criminal Justice," Interfaces, INFORMS, vol. 48(5), pages 449-466, October.
- Kristian Lum & David B. Dunson & James Johndrow, 2022. "Closer than they appear: A Bayesian perspective on individual‐level heterogeneity in risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 588-614, April.
- Jon Kleinberg & Sendhil Mullainathan, 2019. "Simplicity Creates Inequity: Implications for Fairness, Stereotypes, and Interpretability," NBER Working Papers 25854, National Bureau of Economic Research, Inc.
More about this item
Keywords
Chronic opioid therapy; Pain management; Risk score; Predictive modeling; Clinical decision support;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:4:d:10.1007_s10729-022-09605-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.