Author
Listed:
- Bojun Liu
(University of Wisconsin-Madison
University of Wisconsin-Madison)
- Jordan G. Boysen
(University of Wisconsin-Madison)
- Ilona Christy Unarta
(University of Wisconsin-Madison
University of Wisconsin-Madison)
- Xuefeng Du
(University of Wisconsin-Madison)
- Yixuan Li
(University of Wisconsin-Madison
University of Wisconsin-Madison)
- Xuhui Huang
(University of Wisconsin-Madison
University of Wisconsin-Madison)
Abstract
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers. Here, we introduce Transition State identification via Dispersion and vAriational principle Regularized neural networks (TS-DAR), a deep learning framework inspired by out-of-distribution (OOD) detection in trustworthy artificial intelligence (AI). TS-DAR offers an end-to-end pipeline that can simultaneously detect all transition states between multiple free minima from MD simulations using the regularized hyperspherical embeddings in latent space. The key insight of TS-DAR lies in treating transition state structures as OOD data, recognizing that they are sparsely populated and exhibit a distributional shift from metastable states. We demonstrate the power of TS-DAR by applying it to a 2D potential, alanine dipeptide, and the translocation of a DNA motor protein on DNA, where it outperforms previous methods in identifying transition states.
Suggested Citation
Bojun Liu & Jordan G. Boysen & Ilona Christy Unarta & Xuefeng Du & Yixuan Li & Xuhui Huang, 2025.
"Exploring transition states of protein conformational changes via out-of-distribution detection in the hyperspherical latent space,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55228-4
DOI: 10.1038/s41467-024-55228-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55228-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.