Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-55461-x
Download full text from publisher
References listed on IDEAS
- Zhang, Zhenzhen & Ma, Xia & Zhang, Yongxin & Sun, Guiquan & Zhang, Zi-Ke, 2023. "Identifying critical driving factors for human brucellosis in Inner Mongolia, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
- Alexander Aurell & René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Finite State Graphon Games with Applications to Epidemics," Dynamic Games and Applications, Springer, vol. 12(1), pages 49-81, March.
- Clement A. Adebamowo & Shawneequa Callier & Simisola Akintola & Oluchi Maduka & Ayodele Jegede & Christopher Arima & Temidayo Ogundiran & Sally N. Adebamowo, 2023. "The promise of data science for health research in Africa," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Reza Yaesoubi & Shiying You & Qin Xi & Nicolas A. Menzies & Ashleigh Tuite & Yonatan H. Grad & Joshua A. Salomon, 2023. "Generating simple classification rules to predict local surges in COVID-19 hospitalizations," Health Care Management Science, Springer, vol. 26(2), pages 301-312, June.
- Christopher Weyant & Serin Lee & Jason R. Andrews & Fernando Alarid-Escudero & Jeremy D. Goldhaber-Fiebert, 2023. "Dynamics of Respiratory Infectious Diseases in Incarcerated and Free-Living Populations: A Simulation Modeling Study," Medical Decision Making, , vol. 43(1), pages 42-52, January.
- Theresa Reiker & Monica Golumbeanu & Andrew Shattock & Lydia Burgert & Thomas A. Smith & Sarah Filippi & Ewan Cameron & Melissa A. Penny, 2021. "Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Alex Davies & Petar Veličković & Lars Buesing & Sam Blackwell & Daniel Zheng & Nenad Tomašev & Richard Tanburn & Peter Battaglia & Charles Blundell & András Juhász & Marc Lackenby & Geordie Williamson, 2021. "Advancing mathematics by guiding human intuition with AI," Nature, Nature, vol. 600(7887), pages 70-74, December.
- Charles Murphy & Edward Laurence & Antoine Allard, 2021. "Deep learning of contagion dynamics on complex networks," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Quang Dang Nguyen & Mikhail Prokopenko, 2022. "A general framework for optimising cost-effectiveness of pandemic response under partial intervention measures," Papers 2205.08996, arXiv.org, revised Nov 2022.
- Chen, Kexin & Pun, Chi Seng & Wong, Hoi Ying, 2023. "Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 84-98.
- Emma Saulnier & Olivier Gascuel & Samuel Alizon, 2017. "Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-31, March.
- Ross Williams & Niyousha Hosseinichimeh & Aritra Majumdar & Navid Ghaffarzadegan, 2023. "Epidemic Modeling with Generative Agents," Papers 2307.04986, arXiv.org.
- C Marijn Hazelbag & Jonathan Dushoff & Emanuel M Dominic & Zinhle E Mthombothi & Wim Delva, 2020. "Calibration of individual-based models to epidemiological data: A systematic review," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-17, May.
- Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
- Jamie M. Caldwell & A. Desiree LaBeaud & Eric F. Lambin & Anna M. Stewart-Ibarra & Bryson A. Ndenga & Francis M. Mutuku & Amy R. Krystosik & Efraín Beltrán Ayala & Assaf Anyamba & Mercy J. Borbor-Cord, 2021. "Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Marco Pangallo & Alberto Aleta & R. Maria del Rio-Chanona & Anton Pichler & David Martín-Corral & Matteo Chinazzi & François Lafond & Marco Ajelli & Esteban Moro & Yamir Moreno & Alessandro Vespignani, 2024.
"The unequal effects of the health–economy trade-off during the COVID-19 pandemic,"
Nature Human Behaviour, Nature, vol. 8(2), pages 264-275, February.
- Marco Pangallo & Alberto Aleta & R. Maria del Rio Chanona & Anton Pichler & David Mart'in-Corral & Matteo Chinazzi & Franc{c}ois Lafond & Marco Ajelli & Esteban Moro & Yamir Moreno & Alessandro Vespig, 2022. "The unequal effects of the health-economy tradeoff during the COVID-19 pandemic," Papers 2212.03567, arXiv.org.
- Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
- Junyi Gao & Joerg Heintz & Christina Mack & Lucas Glass & Adam Cross & Jimeng Sun, 2023. "Evidence-driven spatiotemporal COVID-19 hospitalization prediction with Ising dynamics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
- Joseph N. S. Eisenberg & Jeffrey A. Soller & James Scott & Don M. Eisenberg & John M. Colford, 2004. "A Dynamic Model to Assess Microbial Health Risks Associated with Beneficial Uses of Biosolids," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 221-236, February.
- Marian Farah & Paul Birrell & Stefano Conti & Daniela De Angelis, 2014. "Bayesian Emulation and Calibration of a Dynamic Epidemic Model for A/H1N1 Influenza," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1398-1411, December.
- Jamie Bedson & Laura A. Skrip & Danielle Pedi & Sharon Abramowitz & Simone Carter & Mohamed F. Jalloh & Sebastian Funk & Nina Gobat & Tamara Giles-Vernick & Gerardo Chowell & João Rangel Almeida & Ran, 2021. "A review and agenda for integrated disease models including social and behavioural factors," Nature Human Behaviour, Nature, vol. 5(7), pages 834-846, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
- Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
- Jackson Samuel E. & Vernon Ian & Liu Junli & Lindsey Keith, 2020. "Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(2), pages 1-33, April.
- Xin Li & Qunxi Zhu & Chengli Zhao & Xiaojun Duan & Bolin Zhao & Xue Zhang & Huanfei Ma & Jie Sun & Wei Lin, 2024. "Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
- Theresa Reiker & Monica Golumbeanu & Andrew Shattock & Lydia Burgert & Thomas A. Smith & Sarah Filippi & Ewan Cameron & Melissa A. Penny, 2021. "Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Gyanendra Pokharel & Rob Deardon, 2022. "Emulation‐based inference for spatial infectious disease transmission models incorporating event time uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 455-479, March.
- Mohammadi, Hossein & Challenor, Peter & Goodfellow, Marc, 2019. "Emulating dynamic non-linear simulators using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 178-196.
- Vahab Vahdat & Oguzhan Alagoz & Jing Voon Chen & Leila Saoud & Bijan J. Borah & Paul J. Limburg, 2023. "Calibration and Validation of the Colorectal Cancer and Adenoma Incidence and Mortality (CRC-AIM) Microsimulation Model Using Deep Neural Networks," Medical Decision Making, , vol. 43(6), pages 719-736, August.
- Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
- Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55461-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.