IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51913-6.html
   My bibliography  Save this article

Using bacterial population dynamics to count phages and their lysogens

Author

Listed:
  • Yuncong Geng

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Thu Vu Phuc Nguyen

    (University of Illinois Urbana-Champaign
    Baylor College of Medicine
    Princeton University)

  • Ehsan Homaee

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Ido Golding

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    Baylor College of Medicine
    University of Illinois Urbana-Champaign)

Abstract

Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.

Suggested Citation

  • Yuncong Geng & Thu Vu Phuc Nguyen & Ehsan Homaee & Ido Golding, 2024. "Using bacterial population dynamics to count phages and their lysogens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51913-6
    DOI: 10.1038/s41467-024-51913-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51913-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51913-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zohar Erez & Ida Steinberger-Levy & Maya Shamir & Shany Doron & Avigail Stokar-Avihail & Yoav Peleg & Sarah Melamed & Azita Leavitt & Alon Savidor & Shira Albeck & Gil Amitai & Rotem Sorek, 2017. "Communication between viruses guides lysis–lysogeny decisions," Nature, Nature, vol. 541(7638), pages 488-493, January.
    2. Hannah G. Hampton & Bridget N. J. Watson & Peter C. Fineran, 2020. "The arms race between bacteria and their phage foes," Nature, Nature, vol. 577(7790), pages 327-336, January.
    3. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    4. Sarah Kronheim & Martin Daniel-Ivad & Zhuang Duan & Sungwon Hwang & Andrew I. Wong & Ian Mantel & Justin R. Nodwell & Karen L. Maxwell, 2018. "A chemical defence against phage infection," Nature, Nature, vol. 564(7735), pages 283-286, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan P. Bullen & Cydney N. Johnson & Shelby E. Andersen & Garima Arya & Sonia R. Marotta & Yan-Jiun Lee & Peter R. Weigele & John C. Whitney & Breck A. Duerkop, 2024. "An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Clemente F. Arias & Francisco J. Acosta & Federica Bertocchini & Miguel A. Herrero & Cristina Fernández-Arias, 2022. "The coordination of anti-phage immunity mechanisms in bacterial cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Tzu-Ping Ko & Yu-Chuan Wang & Chia-Shin Yang & Mei-Hui Hou & Chao-Jung Chen & Yi-Fang Chiu & Yeh Chen, 2022. "Crystal structure and functional implication of bacterial STING," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Minyoung Kevin Kim & Qingquan Chen & Arne Echterhof & Nina Pennetzdorfer & Robert C. McBride & Niaz Banaei & Elizabeth B. Burgener & Carlos E. Milla & Paul L. Bollyky, 2024. "A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Brian K Mannakee & Ryan N Gutenkunst, 2016. "Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution," PLOS Genetics, Public Library of Science, vol. 12(7), pages 1-20, July.
    6. Alexandre Donzé & Eric Fanchon & Lucie Martine Gattepaille & Oded Maler & Philippe Tracqui, 2011. "Robustness Analysis and Behavior Discrimination in Enzymatic Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-16, September.
    7. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    8. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    9. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    10. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    11. Jack P. K. Bravo & Cristian Aparicio-Maldonado & Franklin L. Nobrega & Stan J. J. Brouns & David W. Taylor, 2022. "Structural basis for broad anti-phage immunity by DISARM," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    13. Xinxian Shao & Andrew Mugler & Justin Kim & Ha Jun Jeong & Bruce R Levin & Ilya Nemenman, 2017. "Growth of bacteria in 3-d colonies," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-19, July.
    14. Karl Fogelmark & Carl Troein, 2014. "Rethinking Transcriptional Activation in the Arabidopsis Circadian Clock," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    15. Agus Hartoyo & Peter J Cadusch & David T J Liley & Damien G Hicks, 2019. "Parameter estimation and identifiability in a neural population model for electro-cortical activity," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-27, May.
    16. Christian A Tiemann & Joep Vanlier & Maaike H Oosterveer & Albert K Groen & Peter A J Hilbers & Natal A W van Riel, 2013. "Parameter Trajectory Analysis to Identify Treatment Effects of Pharmacological Interventions," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-15, August.
    17. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    18. Gabriel Magno Freitas Almeida & Ville Hoikkala & Janne Ravantti & Noora Rantanen & Lotta-Riina Sundberg, 2022. "Mucin induces CRISPR-Cas defense in an opportunistic pathogen," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Claudia Schillings & Mikael Sunnåker & Jörg Stelling & Christoph Schwab, 2015. "Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-16, August.
    20. Giorgos Minas & David A Rand, 2017. "Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51913-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.