IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004457.html
   My bibliography  Save this article

Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks

Author

Listed:
  • Claudia Schillings
  • Mikael Sunnåker
  • Jörg Stelling
  • Christoph Schwab

Abstract

Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.Author Summary: In various scientific domains, in particular in systems biology, dynamic mathematical models of increasing complexity are being developed and analyzed to study biochemical reaction networks. A major challenge in dealing with such models is the uncertainty in parameters such as kinetic constants; how to efficiently and precisely quantify the effects of parametric uncertainties on systems behavior remains a question. Addressing this computational challenge for large systems, with good scaling up to hundreds of species and kinetic parameters, is important for many forward (e.g., uncertainty quantification) and inverse (e.g., system identification) problems. Here, we propose a sparse, deterministic adaptive interpolation method tailored to high-dimensional parametric problems that allows for fast, deterministic computational analysis of large biochemical reaction networks. The method is based on adaptive Smolyak interpolation of the parametric solution at judiciously chosen points in high-dimensional parameter space, combined with adaptive time-stepping for the actual numerical simulation of the network dynamics. It is “non-intrusive” and well-suited both for massively parallel implementation and for use in standard (systems biology) toolboxes.

Suggested Citation

  • Claudia Schillings & Mikael Sunnåker & Jörg Stelling & Christoph Schwab, 2015. "Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:plo:pcbi00:1004457
    DOI: 10.1371/journal.pcbi.1004457
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004457
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004457&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    2. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    3. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    4. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    5. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    6. Xinxian Shao & Andrew Mugler & Justin Kim & Ha Jun Jeong & Bruce R Levin & Ilya Nemenman, 2017. "Growth of bacteria in 3-d colonies," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-19, July.
    7. Agus Hartoyo & Peter J Cadusch & David T J Liley & Damien G Hicks, 2019. "Parameter estimation and identifiability in a neural population model for electro-cortical activity," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-27, May.
    8. Christian A Tiemann & Joep Vanlier & Maaike H Oosterveer & Albert K Groen & Peter A J Hilbers & Natal A W van Riel, 2013. "Parameter Trajectory Analysis to Identify Treatment Effects of Pharmacological Interventions," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-15, August.
    9. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    10. Yuncong Geng & Thu Vu Phuc Nguyen & Ehsan Homaee & Ido Golding, 2024. "Using bacterial population dynamics to count phages and their lysogens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Giorgos Minas & David A Rand, 2017. "Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    12. Marc Hafner & Heinz Koeppl & Martin Hasler & Andreas Wagner, 2009. "‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-10, October.
    13. Joshua Russell-Buckland & Christopher P Barnes & Ilias Tachtsidis, 2019. "A Bayesian framework for the analysis of systems biology models of the brain," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-29, April.
    14. Borut Kirn, 2019. "Visualization of Myocardial Strain Pattern Uniqueness with Respect to Activation Time and Contractility: A Computational Study," Data, MDPI, vol. 4(2), pages 1-7, May.
    15. Andrew J K Conlan & Ellen Brooks Pollock & Trevelyan J McKinley & Andrew P Mitchell & Gareth J Jones & Martin Vordermeier & James L N Wood, 2015. "Potential Benefits of Cattle Vaccination as a Supplementary Control for Bovine Tuberculosis," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-27, February.
    16. Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Farzaneh Khajouei & Saurabh Sinha, 2018. "An information theoretic treatment of sequence-to-expression modeling," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-24, September.
    18. Sang O K Song & Justin Hogg & Zhi-Yong Peng & Robert Parker & John A Kellum & Gilles Clermont, 2012. "Ensemble Models of Neutrophil Trafficking in Severe Sepsis," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-16, March.
    19. Port, Alexander & Bryan, Karin R. & Pilditch, Conrad A. & Hamilton, David P. & Bischof, Kai, 2015. "Algebraic equilibrium solution of tissue nitrogen quota in algae and the discrepancy between calibrated parameters and physiological properties," Ecological Modelling, Elsevier, vol. 312(C), pages 281-291.
    20. Van Kinh Nguyen & Frank Klawonn & Rafael Mikolajczyk & Esteban A Hernandez-Vargas, 2016. "Analysis of Practical Identifiability of a Viral Infection Model," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.