IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v564y2018i7735d10.1038_s41586-018-0767-x.html
   My bibliography  Save this article

A chemical defence against phage infection

Author

Listed:
  • Sarah Kronheim

    (University of Toronto)

  • Martin Daniel-Ivad

    (University of Toronto)

  • Zhuang Duan

    (University of Toronto)

  • Sungwon Hwang

    (University of Toronto)

  • Andrew I. Wong

    (University of Toronto)

  • Ian Mantel

    (University of Toronto)

  • Justin R. Nodwell

    (University of Toronto)

  • Karen L. Maxwell

    (University of Toronto)

Abstract

The arms race between bacteria and the phages that infect them drives the continual evolution of diverse anti-phage defences. Previously described anti-phage systems have highly varied defence mechanisms1–11; however, all mechanisms rely on protein components to mediate defence. Here we report a chemical anti-phage defence system that is widespread in Streptomyces. We show that three naturally produced molecules that insert into DNA are able to block phage replication, whereas molecules that target DNA by other mechanisms do not. Because double-stranded DNA phages are the most numerous group in the biosphere and the production of secondary metabolites by bacteria is ubiquitous12, this mechanism of anti-phage defence probably has a major evolutionary role in shaping bacterial communities.

Suggested Citation

  • Sarah Kronheim & Martin Daniel-Ivad & Zhuang Duan & Sungwon Hwang & Andrew I. Wong & Ian Mantel & Justin R. Nodwell & Karen L. Maxwell, 2018. "A chemical defence against phage infection," Nature, Nature, vol. 564(7735), pages 283-286, December.
  • Handle: RePEc:nat:nature:v:564:y:2018:i:7735:d:10.1038_s41586-018-0767-x
    DOI: 10.1038/s41586-018-0767-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0767-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0767-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuncong Geng & Thu Vu Phuc Nguyen & Ehsan Homaee & Ido Golding, 2024. "Using bacterial population dynamics to count phages and their lysogens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Nathan P. Bullen & Cydney N. Johnson & Shelby E. Andersen & Garima Arya & Sonia R. Marotta & Yan-Jiun Lee & Peter R. Weigele & John C. Whitney & Breck A. Duerkop, 2024. "An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Florian Tesson & Alexandre Hervé & Ernest Mordret & Marie Touchon & Camille d’Humières & Jean Cury & Aude Bernheim, 2022. "Systematic and quantitative view of the antiviral arsenal of prokaryotes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Clemente F. Arias & Francisco J. Acosta & Federica Bertocchini & Miguel A. Herrero & Cristina Fernández-Arias, 2022. "The coordination of anti-phage immunity mechanisms in bacterial cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:564:y:2018:i:7735:d:10.1038_s41586-018-0767-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.