IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30673-1.html
   My bibliography  Save this article

Structural basis for broad anti-phage immunity by DISARM

Author

Listed:
  • Jack P. K. Bravo

    (University of Texas at Austin)

  • Cristian Aparicio-Maldonado

    (Delft University of Technology
    Kavli Institute of Nanoscience
    University of Southampton)

  • Franklin L. Nobrega

    (University of Southampton)

  • Stan J. J. Brouns

    (Delft University of Technology
    Kavli Institute of Nanoscience)

  • David W. Taylor

    (University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin
    Dell Medical School)

Abstract

In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic. These structures reveal that DrmAB core complex is autoinhibited by a trigger loop (TL) within DrmA and binding to DNA substrates containing a 5′ overhang dislodges the TL, initiating a long-range structural rearrangement for DrmAB activation. Together with structure-guided in vivo studies, our work provides insights into the mechanism of phage DNA recognition and specific activation of this widespread antiviral defense system.

Suggested Citation

  • Jack P. K. Bravo & Cristian Aparicio-Maldonado & Franklin L. Nobrega & Stan J. J. Brouns & David W. Taylor, 2022. "Structural basis for broad anti-phage immunity by DISARM," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30673-1
    DOI: 10.1038/s41467-022-30673-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30673-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30673-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannah G. Hampton & Bridget N. J. Watson & Peter C. Fineran, 2020. "The arms race between bacteria and their phage foes," Nature, Nature, vol. 577(7790), pages 327-336, January.
    2. Jun Yu & Pierre Raia & Chloe M. Ghent & Tobias Raisch & Yashar Sadian & Simone Cavadini & Pramod M. Sabale & David Barford & Stefan Raunser & David O. Morgan & Andreas Boland, 2021. "Structural basis of human separase regulation by securin and CDK1–cyclin B1," Nature, Nature, vol. 596(7870), pages 138-142, August.
    3. Asaf Levy & Moran G. Goren & Ido Yosef & Oren Auster & Miriam Manor & Gil Amitai & Rotem Edgar & Udi Qimron & Rotem Sorek, 2015. "CRISPR adaptation biases explain preference for acquisition of foreign DNA," Nature, Nature, vol. 520(7548), pages 505-510, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devashish Dwivedi & Daniela Harry & Patrick Meraldi, 2023. "Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Tzu-Ping Ko & Yu-Chuan Wang & Chia-Shin Yang & Mei-Hui Hou & Chao-Jung Chen & Yi-Fang Chiu & Yeh Chen, 2022. "Crystal structure and functional implication of bacterial STING," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Nathan P. Bullen & Cydney N. Johnson & Shelby E. Andersen & Garima Arya & Sonia R. Marotta & Yan-Jiun Lee & Peter R. Weigele & John C. Whitney & Breck A. Duerkop, 2024. "An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Lidiya Lisitskaya & Yeonoh Shin & Aleksei Agapov & Anna Olina & Ekaterina Kropocheva & Sergei Ryazansky & Alexei A. Aravin & Daria Esyunina & Katsuhiko S. Murakami & Andrey Kulbachinskiy, 2022. "Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Jiemin Du & Susanne Meile & Jasmin Baggenstos & Tobias Jäggi & Pietro Piffaretti & Laura Hunold & Cassandra I. Matter & Lorenz Leitner & Thomas M. Kessler & Martin J. Loessner & Samuel Kilcher & Matth, 2023. "Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Evan A. Schwartz & Tess M. McBride & Jack P. K. Bravo & Daniel Wrapp & Peter C. Fineran & Robert D. Fagerlund & David W. Taylor, 2022. "Structural rearrangements allow nucleic acid discrimination by type I-D Cascade," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Clemente F. Arias & Francisco J. Acosta & Federica Bertocchini & Miguel A. Herrero & Cristina Fernández-Arias, 2022. "The coordination of anti-phage immunity mechanisms in bacterial cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Hanne Hendrix & Annabel Itterbeek & Hannelore Longin & Lize Delanghe & Eveline Vriens & Marta Vallino & Eveline-Marie Lammens & Farhana Haque & Ahmed Yusuf & Jean-Paul Noben & Maarten Boon & Matthias , 2024. "PlzR regulates type IV pili assembly in Pseudomonas aeruginosa via PilZ binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yuncong Geng & Thu Vu Phuc Nguyen & Ehsan Homaee & Ido Golding, 2024. "Using bacterial population dynamics to count phages and their lysogens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Ning Cui & Jun-Tao Zhang & Zhuolin Li & Xiao-Yu Liu & Chongyuan Wang & Hongda Huang & Ning Jia, 2022. "Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Gabriel Magno Freitas Almeida & Ville Hoikkala & Janne Ravantti & Noora Rantanen & Lotta-Riina Sundberg, 2022. "Mucin induces CRISPR-Cas defense in an opportunistic pathogen," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Hanpeng Liao & Chen Liu & Shungui Zhou & Chunqin Liu & David J. Eldridge & Chaofan Ai & Steven W. Wilhelm & Brajesh K. Singh & Xiaolong Liang & Mark Radosevich & Qiu-e Yang & Xiang Tang & Zhong Wei & , 2024. "Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Chu Chen & Valentina Piano & Amal Alex & Simon J. Y. Han & Pim J. Huis in ’t Veld & Babhrubahan Roy & Daniel Fergle & Andrea Musacchio & Ajit P. Joglekar, 2023. "The structural flexibility of MAD1 facilitates the assembly of the Mitotic Checkpoint Complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jiaxuan Cheng & Ningning Li & Yunjing Huo & Shangyu Dang & Bik-Kwoon Tye & Ning Gao & Yuanliang Zhai, 2022. "Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Wenxiu Wang & Weizhi Song & Marwan E. Majzoub & Xiaoyuan Feng & Bu Xu & Jianchang Tao & Yuanqing Zhu & Zhiyong Li & Pei-Yuan Qian & Nicole S. Webster & Torsten Thomas & Lu Fan, 2024. "Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Serena Bradde & Marija Vucelja & Tiberiu Teşileanu & Vijay Balasubramanian, 2017. "Dynamics of adaptive immunity against phage in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-16, April.
    18. Rebecca Conners & Mathew McLaren & Urszula Łapińska & Kelly Sanders & M. Rhia L. Stone & Mark A. T. Blaskovich & Stefano Pagliara & Bertram Daum & Jasna Rakonjac & Vicki A. M. Gold, 2021. "CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    19. Suguru Nishijima & Naoyoshi Nagata & Yuya Kiguchi & Yasushi Kojima & Tohru Miyoshi-Akiyama & Moto Kimura & Mitsuru Ohsugi & Kohjiro Ueki & Shinichi Oka & Masashi Mizokami & Takao Itoi & Takashi Kawai , 2022. "Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Sam C. Went & David M. Picton & Richard D. Morgan & Andrew Nelson & Aisling Brady & Giuseppina Mariano & David T. F. Dryden & Darren L. Smith & Nicolas Wenner & Jay C. D. Hinton & Tim R. Blower, 2024. "Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30673-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.