IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006365.html
   My bibliography  Save this article

The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments

Author

Listed:
  • Zachary R Fox
  • Brian Munsky

Abstract

Modern optical imaging experiments not only measure single-cell and single-molecule dynamics with high precision, but they can also perturb the cellular environment in myriad controlled and novel settings. Techniques, such as single-molecule fluorescence in-situ hybridization, microfluidics, and optogenetics, have opened the door to a large number of potential experiments, which begs the question of how to choose the best possible experiment. The Fisher information matrix (FIM) estimates how well potential experiments will constrain model parameters and can be used to design optimal experiments. Here, we introduce the finite state projection (FSP) based FIM, which uses the formalism of the chemical master equation to derive and compute the FIM. The FSP-FIM makes no assumptions about the distribution shapes of single-cell data, and it does not require precise measurements of higher order moments of such distributions. We validate the FSP-FIM against well-known Fisher information results for the simple case of constitutive gene expression. We then use numerical simulations to demonstrate the use of the FSP-FIM to optimize the timing of single-cell experiments with more complex, non-Gaussian fluctuations. We validate optimal simulated experiments determined using the FSP-FIM with Monte-Carlo approaches and contrast these to experiment designs chosen by traditional analyses that assume Gaussian fluctuations or use the central limit theorem. By systematically designing experiments to use all of the measurable fluctuations, our method enables a key step to improve co-design of experiments and quantitative models.Author summary: A main objective of quantitative modeling is to predict the behaviors of complex systems under varying conditions. In a biological context, stochastic fluctuations in expression levels among isogenic cell populations have required modeling efforts to incorporate and even rely upon stochasticity. At the same time, new experimental variables such as chemical induction and optogenetic control have created vast opportunities to probe and understand gene expression, even at single-molecule and single-cell precision. With many possible measurements or perturbations to choose from, researchers require sophisticated approaches to choose which experiment to perform next. In this work, we provide a new tool, the finite state projection based Fisher information matrix (FSP-FIM), which considers all cell-to-cell fluctuations measured in modern data sets, and can design optimal experiments under these conditions. Unlike previous approaches, the FSP-FIM does not make any assumptions about the shape of the distribution being measured. This new tool will allow experimentalists to optimally perturb systems to learn as much as possible about single-cell processes with a minimum of experimental cost or effort.

Suggested Citation

  • Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
  • Handle: RePEc:plo:pcbi00:1006365
    DOI: 10.1371/journal.pcbi.1006365
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006365
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006365&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph Zimmer, 2016. "Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-37, September.
    2. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    3. Bernhard Steiert & Andreas Raue & Jens Timmer & Clemens Kreutz, 2012. "Experimental Design for Parameter Estimation of Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
    4. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    5. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    6. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.
    2. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    3. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    4. Graham Rockwell & Nicholas J Guido & George M Church, 2013. "Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-15, January.
    5. Ioannis G Aviziotis & Michail E Kavousanakis & Andreas G Boudouvis, 2015. "Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    6. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    7. Xu, Yong & Zhu, Ya-nan & Shen, Jianwei & Su, Jianbin, 2014. "Switch dynamics for stochastic model of genetic toggle switch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 461-466.
    8. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    9. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    10. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    11. Amy L. Hughes & Aleksander T. Szczurek & Jessica R. Kelley & Anna Lastuvkova & Anne H. Turberfield & Emilia Dimitrova & Neil P. Blackledge & Robert J. Klose, 2023. "A CpG island-encoded mechanism protects genes from premature transcription termination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    13. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    14. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    15. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    16. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    17. Qiwen Sun & Zhaohang Cai & Chunjuan Zhu, 2022. "A Novel Dynamical Regulation of mRNA Distribution by Cross-Talking Pathways," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    18. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    19. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    20. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.