IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-26583-3.html
   My bibliography  Save this article

Crystal structure and functional implication of bacterial STING

Author

Listed:
  • Tzu-Ping Ko

    (Institute of Biological Chemistry, Academia Sinica)

  • Yu-Chuan Wang

    (Institute of New Drug Development, China Medical University)

  • Chia-Shin Yang

    (Institute of New Drug Development, China Medical University)

  • Mei-Hui Hou

    (Institute of New Drug Development, China Medical University)

  • Chao-Jung Chen

    (Graduate Institute of Integrated Medicine, China Medical University
    Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital)

  • Yi-Fang Chiu

    (Institute of New Drug Development, China Medical University)

  • Yeh Chen

    (Institute of New Drug Development, China Medical University
    Research Center for Cancer Biology, China Medical University
    New Drug Development Center, China Medical University)

Abstract

Mammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in β-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2’3’-cGAMP-dependent signaling in eukaryotes.

Suggested Citation

  • Tzu-Ping Ko & Yu-Chuan Wang & Chia-Shin Yang & Mei-Hui Hou & Chao-Jung Chen & Yi-Fang Chiu & Yeh Chen, 2022. "Crystal structure and functional implication of bacterial STING," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-26583-3
    DOI: 10.1038/s41467-021-26583-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26583-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26583-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Cohen & Sarah Melamed & Adi Millman & Gabriela Shulman & Yaara Oppenheimer-Shaanan & Assaf Kacen & Shany Doron & Gil Amitai & Rotem Sorek, 2019. "Cyclic GMP–AMP signalling protects bacteria against viral infection," Nature, Nature, vol. 574(7780), pages 691-695, October.
    2. Hannah G. Hampton & Bridget N. J. Watson & Peter C. Fineran, 2020. "The arms race between bacteria and their phage foes," Nature, Nature, vol. 577(7790), pages 327-336, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Shin Yang & Tzu-Ping Ko & Chao-Jung Chen & Mei-Hui Hou & Yu-Chuan Wang & Yeh Chen, 2023. "Crystal structure and functional implications of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Mei-Hui Hou & Yu-Chuan Wang & Chia-Shin Yang & Kuei-Fen Liao & Je-Wei Chang & Orion Shih & Yi-Qi Yeh & Manoj Kumar Sriramoju & Tzu-Wen Weng & U-Ser Jeng & Shang-Te Danny Hsu & Yeh Chen, 2023. "Structural insights into the regulation, ligand recognition, and oligomerization of bacterial STING," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Mei-Hui Hou & Chao-Jung Chen & Chia-Shin Yang & Yu-Chuan Wang & Yeh Chen, 2024. "Structural and functional characterization of cyclic pyrimidine-regulated anti-phage system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan P. Bullen & Cydney N. Johnson & Shelby E. Andersen & Garima Arya & Sonia R. Marotta & Yan-Jiun Lee & Peter R. Weigele & John C. Whitney & Breck A. Duerkop, 2024. "An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Chia-Shin Yang & Tzu-Ping Ko & Chao-Jung Chen & Mei-Hui Hou & Yu-Chuan Wang & Yeh Chen, 2023. "Crystal structure and functional implications of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Jack P. K. Bravo & Cristian Aparicio-Maldonado & Franklin L. Nobrega & Stan J. J. Brouns & David W. Taylor, 2022. "Structural basis for broad anti-phage immunity by DISARM," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Clemente F. Arias & Francisco J. Acosta & Federica Bertocchini & Miguel A. Herrero & Cristina Fernández-Arias, 2022. "The coordination of anti-phage immunity mechanisms in bacterial cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Yuncong Geng & Thu Vu Phuc Nguyen & Ehsan Homaee & Ido Golding, 2024. "Using bacterial population dynamics to count phages and their lysogens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Gabriel Magno Freitas Almeida & Ville Hoikkala & Janne Ravantti & Noora Rantanen & Lotta-Riina Sundberg, 2022. "Mucin induces CRISPR-Cas defense in an opportunistic pathogen," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Rebecca Conners & Mathew McLaren & Urszula Łapińska & Kelly Sanders & M. Rhia L. Stone & Mark A. T. Blaskovich & Stefano Pagliara & Bertram Daum & Jasna Rakonjac & Vicki A. M. Gold, 2021. "CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Sam C. Went & David M. Picton & Richard D. Morgan & Andrew Nelson & Aisling Brady & Giuseppina Mariano & David T. F. Dryden & Darren L. Smith & Nicolas Wenner & Jay C. D. Hinton & Tim R. Blower, 2024. "Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Ning Duan & Emily Hand & Mannuku Pheko & Shikha Sharma & Akintunde Emiola, 2024. "Structure-guided discovery of anti-CRISPR and anti-phage defense proteins," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Yoann G. Santin & Adrià Sogues & Yvann Bourigault & Han K. Remaut & Géraldine Laloux, 2024. "Lifecycle of a predatory bacterium vampirizing its prey through the cell envelope and S-layer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Mingfang Bi & Wenjing Su & Jiafu Li & Xiaobing Mo, 2024. "Insights into the inhibition of protospacer integration via direct interaction between Cas2 and AcrVA5," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Jiemin Du & Susanne Meile & Jasmin Baggenstos & Tobias Jäggi & Pietro Piffaretti & Laura Hunold & Cassandra I. Matter & Lorenz Leitner & Thomas M. Kessler & Martin J. Loessner & Samuel Kilcher & Matth, 2023. "Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Evan A. Schwartz & Tess M. McBride & Jack P. K. Bravo & Daniel Wrapp & Peter C. Fineran & Robert D. Fagerlund & David W. Taylor, 2022. "Structural rearrangements allow nucleic acid discrimination by type I-D Cascade," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Suguru Nishijima & Naoyoshi Nagata & Yuya Kiguchi & Yasushi Kojima & Tohru Miyoshi-Akiyama & Moto Kimura & Mitsuru Ohsugi & Kohjiro Ueki & Shinichi Oka & Masashi Mizokami & Takao Itoi & Takashi Kawai , 2022. "Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Florian Tesson & Alexandre Hervé & Ernest Mordret & Marie Touchon & Camille d’Humières & Jean Cury & Aude Bernheim, 2022. "Systematic and quantitative view of the antiviral arsenal of prokaryotes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Xuan Zou & Xiaohong Xiao & Ziran Mo & Yashi Ge & Xing Jiang & Ruolin Huang & Mengxue Li & Zixin Deng & Shi Chen & Lianrong Wang & Sang Yup Lee, 2022. "Systematic strategies for developing phage resistant Escherichia coli strains," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-26583-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.