IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31330-3.html
   My bibliography  Save this article

Mucin induces CRISPR-Cas defense in an opportunistic pathogen

Author

Listed:
  • Gabriel Magno Freitas Almeida

    (University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center
    UiT The Arctic University of Norway)

  • Ville Hoikkala

    (University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center)

  • Janne Ravantti

    (University of Helsinki, Molecular and Integrative Biosciences Research Programme)

  • Noora Rantanen

    (University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center)

  • Lotta-Riina Sundberg

    (University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center)

Abstract

Parasitism by bacteriophages has led to the evolution of a variety of defense mechanisms in their host bacteria. However, it is unclear what factors lead to specific defenses being deployed upon phage infection. To explore this question, we co-evolved the bacterial fish pathogen Flavobacterium columnare and its virulent phage V156 in presence and absence of a eukaryotic host signal (mucin) for sixteen weeks. The presence of mucin leads to a dramatic increase in CRISPR spacer acquisition, especially in low nutrient conditions where over 60% of colonies obtain at least one new spacer. Additionally, we show that the presence of a competitor bacterium further increases CRISPR spacer acquisition in F. columnare. These results suggest that ecological factors are important in determining defense strategies against phages, and that the phage-bacterium interactions on mucosal surfaces may select for the diversification of bacterial immune systems.

Suggested Citation

  • Gabriel Magno Freitas Almeida & Ville Hoikkala & Janne Ravantti & Noora Rantanen & Lotta-Riina Sundberg, 2022. "Mucin induces CRISPR-Cas defense in an opportunistic pathogen," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31330-3
    DOI: 10.1038/s41467-022-31330-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31330-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31330-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ellinor O. Alseth & Elizabeth Pursey & Adela M. Luján & Isobel McLeod & Clare Rollie & Edze R. Westra, 2019. "Bacterial biodiversity drives the evolution of CRISPR-based phage resistance," Nature, Nature, vol. 574(7779), pages 549-552, October.
    2. Alexander J. Meeske & Sandra Nakandakari-Higa & Luciano A. Marraffini, 2019. "Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage," Nature, Nature, vol. 570(7760), pages 241-245, June.
    3. Timothy R. Sampson & Sunil D. Saroj & Anna C. Llewellyn & Yih-Ling Tzeng & David S. Weiss, 2013. "A CRISPR/Cas system mediates bacterial innate immune evasion and virulence," Nature, Nature, vol. 497(7448), pages 254-257, May.
    4. Timothy R. Sampson & Sunil D. Saroj & Anna C. Llewellyn & Yih-Ling Tzeng & David S. Weiss, 2013. "Correction: Corrigendum: A CRISPR/Cas system mediates bacterial innate immune evasion and virulence," Nature, Nature, vol. 501(7466), pages 262-262, September.
    5. Hannah G. Hampton & Bridget N. J. Watson & Peter C. Fineran, 2020. "The arms race between bacteria and their phage foes," Nature, Nature, vol. 577(7790), pages 327-336, January.
    6. Elina Laanto & Ville Hoikkala & Janne Ravantti & Lotta-Riina Sundberg, 2017. "Long-term genomic coevolution of host-parasite interaction in the natural environment," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleri A. Ashworth & Rosanna C. T. Wright & Rebecca K. Shears & Janet K. L. Wong & Akram Hassan & James P. J. Hall & Aras Kadioglu & Joanne L. Fothergill, 2024. "Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingfang Bi & Wenjing Su & Jiafu Li & Xiaobing Mo, 2024. "Insights into the inhibition of protospacer integration via direct interaction between Cas2 and AcrVA5," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Tzu-Ping Ko & Yu-Chuan Wang & Chia-Shin Yang & Mei-Hui Hou & Chao-Jung Chen & Yi-Fang Chiu & Yeh Chen, 2022. "Crystal structure and functional implication of bacterial STING," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Nathan P. Bullen & Cydney N. Johnson & Shelby E. Andersen & Garima Arya & Sonia R. Marotta & Yan-Jiun Lee & Peter R. Weigele & John C. Whitney & Breck A. Duerkop, 2024. "An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jack P. K. Bravo & Cristian Aparicio-Maldonado & Franklin L. Nobrega & Stan J. J. Brouns & David W. Taylor, 2022. "Structural basis for broad anti-phage immunity by DISARM," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Clemente F. Arias & Francisco J. Acosta & Federica Bertocchini & Miguel A. Herrero & Cristina Fernández-Arias, 2022. "The coordination of anti-phage immunity mechanisms in bacterial cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yuncong Geng & Thu Vu Phuc Nguyen & Ehsan Homaee & Ido Golding, 2024. "Using bacterial population dynamics to count phages and their lysogens," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Ning Cui & Jun-Tao Zhang & Zhuolin Li & Xiao-Yu Liu & Chongyuan Wang & Hongda Huang & Ning Jia, 2022. "Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Wenxiu Wang & Weizhi Song & Marwan E. Majzoub & Xiaoyuan Feng & Bu Xu & Jianchang Tao & Yuanqing Zhu & Zhiyong Li & Pei-Yuan Qian & Nicole S. Webster & Torsten Thomas & Lu Fan, 2024. "Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Rebecca Conners & Mathew McLaren & Urszula Łapińska & Kelly Sanders & M. Rhia L. Stone & Mark A. T. Blaskovich & Stefano Pagliara & Bertram Daum & Jasna Rakonjac & Vicki A. M. Gold, 2021. "CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Sam C. Went & David M. Picton & Richard D. Morgan & Andrew Nelson & Aisling Brady & Giuseppina Mariano & David T. F. Dryden & Darren L. Smith & Nicolas Wenner & Jay C. D. Hinton & Tim R. Blower, 2024. "Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Ning Duan & Emily Hand & Mannuku Pheko & Shikha Sharma & Akintunde Emiola, 2024. "Structure-guided discovery of anti-CRISPR and anti-phage defense proteins," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Yoann G. Santin & Adrià Sogues & Yvann Bourigault & Han K. Remaut & Géraldine Laloux, 2024. "Lifecycle of a predatory bacterium vampirizing its prey through the cell envelope and S-layer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Lidiya Lisitskaya & Yeonoh Shin & Aleksei Agapov & Anna Olina & Ekaterina Kropocheva & Sergei Ryazansky & Alexei A. Aravin & Daria Esyunina & Katsuhiko S. Murakami & Andrey Kulbachinskiy, 2022. "Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Jiemin Du & Susanne Meile & Jasmin Baggenstos & Tobias Jäggi & Pietro Piffaretti & Laura Hunold & Cassandra I. Matter & Lorenz Leitner & Thomas M. Kessler & Martin J. Loessner & Samuel Kilcher & Matth, 2023. "Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Evan A. Schwartz & Tess M. McBride & Jack P. K. Bravo & Daniel Wrapp & Peter C. Fineran & Robert D. Fagerlund & David W. Taylor, 2022. "Structural rearrangements allow nucleic acid discrimination by type I-D Cascade," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Hanne Hendrix & Annabel Itterbeek & Hannelore Longin & Lize Delanghe & Eveline Vriens & Marta Vallino & Eveline-Marie Lammens & Farhana Haque & Ahmed Yusuf & Jean-Paul Noben & Maarten Boon & Matthias , 2024. "PlzR regulates type IV pili assembly in Pseudomonas aeruginosa via PilZ binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Hanpeng Liao & Chen Liu & Shungui Zhou & Chunqin Liu & David J. Eldridge & Chaofan Ai & Steven W. Wilhelm & Brajesh K. Singh & Xiaolong Liang & Mark Radosevich & Qiu-e Yang & Xiang Tang & Zhong Wei & , 2024. "Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Einat Shaer Tamar & Roy Kishony, 2022. "Multistep diversification in spatiotemporal bacterial-phage coevolution," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31330-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.