IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39003-5.html
   My bibliography  Save this article

Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM

Author

Listed:
  • Gheorghe Taran

    (Karlsruhe Institute of Technology)

  • Eufemio Moreno-Pineda

    (Exactas y Tecnología, Universidad de Panamá
    Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá)

  • Michael Schulze

    (Karlsruhe Institute of Technology)

  • Edgar Bonet

    (Institut Néel)

  • Mario Ruben

    (Centre Européen de Sciences Quantiques (CESQ) within the Institut de Science et d’Ingénierie Supramoléculaires (ISIS)
    Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Plats 1
    Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1)

  • Wolfgang Wernsdorfer

    (Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1)

Abstract

The development of quantum technologies requires a thorough understanding of systems possessing quantum effects that can ultimately be manipulated. In the field of molecular magnetism, one of the main challenges is to measure high-order ligand field parameters, which play an essential role in the relaxation properties of SMMs. The development of highly advanced theoretical calculations has allowed the ab-initio determination of such parameters; however, currently, there is a lack of quantitative assessment of how good the ab-initio parameters are. In our quest for technologies that can allow the extraction of such elusive parameters, we develop an experimental technique that combines the EPR spectroscopy and µSQUID magnetometry. We demonstrate the power of the technique by performing EPR-µSQUID measurement of a magnetically diluted single crystal of Et4N[GdPc2], by sweeping the magnetic field and applying a range of multifrequency microwave pulses. As a result, we were able to directly determine the high-order ligand field parameters of the system, enabling us to test theoretical predictions made by state-of-the-art ab-initio methods.

Suggested Citation

  • Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39003-5
    DOI: 10.1038/s41467-023-39003-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39003-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39003-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diana Serrano & Senthil Kumar Kuppusamy & Benoît Heinrich & Olaf Fuhr & David Hunger & Mario Ruben & Philippe Goldner, 2022. "Ultra-narrow optical linewidths in rare-earth molecular crystals," Nature, Nature, vol. 603(7900), pages 241-246, March.
    2. Muhandis Shiddiq & Dorsa Komijani & Yan Duan & Alejandro Gaita-Ariño & Eugenio Coronado & Stephen Hill, 2016. "Enhancing coherence in molecular spin qubits via atomic clock transitions," Nature, Nature, vol. 531(7594), pages 348-351, March.
    3. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    4. Hugo Biard & Eufemio Moreno-Pineda & Mario Ruben & Edgar Bonet & Wolfgang Wernsdorfer & Franck Balestro, 2021. "Increasing the Hilbert space dimension using a single coupled molecular spin," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. E. Garlatti & T. Guidi & S. Ansbro & P. Santini & G. Amoretti & J. Ollivier & H. Mutka & G. Timco & I. J. Vitorica-Yrezabal & G. F. S. Whitehead & R. E. P. Winpenny & S. Carretta, 2017. "Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    6. Michael Kues & Christian Reimer & Piotr Roztocki & Luis Romero Cortés & Stefania Sciara & Benjamin Wetzel & Yanbing Zhang & Alfonso Cino & Sai T. Chu & Brent E. Little & David J. Moss & Lucia Caspani , 2017. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Nature, vol. 546(7660), pages 622-626, June.
    7. Giulia Serrano & Lorenzo Poggini & Giuseppe Cucinotta & Andrea Luigi Sorrentino & Niccolò Giaconi & Brunetto Cortigiani & Danilo Longo & Edwige Otero & Philippe Sainctavit & Andrea Caneschi & Matteo M, 2022. "Magnetic molecules as local sensors of topological hysteresis of superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. S. Bertaina & S. Gambarelli & T. Mitra & B. Tsukerblat & A. Müller & B. Barbara, 2008. "Quantum oscillations in a molecular magnet," Nature, Nature, vol. 453(7192), pages 203-206, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Reale & Jiyoon Hwang & Jeongmin Oh & Harald Brune & Andreas J. Heinrich & Fabio Donati & Yujeong Bae, 2024. "Electrically driven spin resonance of 4f electrons in a single atom on a surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. E. Garlatti & A. Albino & S. Chicco & V. H. A. Nguyen & F. Santanni & L. Paolasini & C. Mazzoli & R. Caciuffo & F. Totti & P. Santini & R. Sessoli & A. Lunghi & S. Carretta, 2023. "The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    5. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    7. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    8. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Daniel Christian Lawo & Rana Abu Bakar & Abraham Cano Aguilera & Filippo Cugini & José Luis Imaña & Idelfonso Tafur Monroy & Juan Jose Vegas Olmos, 2024. "Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel," Future Internet, MDPI, vol. 16(8), pages 1-22, August.
    13. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    16. Piotr Tomasz Makowski & Yuya Kajikawa, 2021. "Automation-driven innovation management? Toward Innovation-Automation-Strategy cycle," Papers 2103.02395, arXiv.org.
    17. Yun-Hao Shi & Zheng-Hang Sun & Yong-Yi Wang & Zheng-An Wang & Yu-Ran Zhang & Wei-Guo Ma & Hao-Tian Liu & Kui Zhao & Jia-Cheng Song & Gui-Han Liang & Zheng-Yang Mei & Jia-Chi Zhang & Hao Li & Chi-Tong , 2024. "Probing spin hydrodynamics on a superconducting quantum simulator," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    20. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39003-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.