IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31909-w.html
   My bibliography  Save this article

Exchange-induced spin polarization in a single magnetic molecule junction

Author

Listed:
  • Tian Pei

    (University of Oxford)

  • James O. Thomas

    (University of Oxford
    University of Oxford, Chemistry Research Laboratory)

  • Simen Sopp

    (University of Oxford)

  • Ming-Yee Tsang

    (University of Oxford)

  • Nicola Dotti

    (University of Oxford)

  • Jonathan Baugh

    (University of Waterloo)

  • Nicholas F. Chilton

    (University of Manchester)

  • Salvador Cardona-Serra

    (Universidad de València)

  • Alejandro Gaita-Ariño

    (Universidad de València)

  • Harry L. Anderson

    (University of Oxford, Chemistry Research Laboratory)

  • Lapo Bogani

    (University of Oxford)

Abstract

Many spintronic devices rely on the presence of spin-polarized currents at zero magnetic field. This is often obtained by spin exchange-bias, where an element with long-range magnetic order creates magnetized states and displaces the hysteresis loop. Here we demonstrate that exchange-split spin states are observable and usable in the smallest conceivable unit: a single magnetic molecule. We use a redox-active porphyrin as a transport channel, coordinating a dysprosium-based single-molecule-magnet inside a graphene nano-gap. Single-molecule transport in magnetic field reveals the existence of exchange-split channels with different spin-polarizations that depend strongly on the field orientation, and comparison with the diamagnetic isostructural compound and milikelvin torque magnetometry unravels the role of the single-molecule anisotropy and the molecular orientation. These results open a path to using spin-exchange in molecular electronics, and offer a method to quantify the internal spin structure of single molecules in multiple oxidation states.

Suggested Citation

  • Tian Pei & James O. Thomas & Simen Sopp & Ming-Yee Tsang & Nicola Dotti & Jonathan Baugh & Nicholas F. Chilton & Salvador Cardona-Serra & Alejandro Gaita-Ariño & Harry L. Anderson & Lapo Bogani, 2022. "Exchange-induced spin polarization in a single magnetic molecule junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31909-w
    DOI: 10.1038/s41467-022-31909-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31909-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31909-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiwoong Park & Abhay N. Pasupathy & Jonas I. Goldsmith & Connie Chang & Yuval Yaish & Jason R. Petta & Marie Rinkoski & James P. Sethna & Héctor D. Abruña & Paul L. McEuen & Daniel C. Ralph, 2002. "Coulomb blockade and the Kondo effect in single-atom transistors," Nature, Nature, vol. 417(6890), pages 722-725, June.
    2. Romain Vincent & Svetlana Klyatskaya & Mario Ruben & Wolfgang Wernsdorfer & Franck Balestro, 2012. "Electronic read-out of a single nuclear spin using a molecular spin transistor," Nature, Nature, vol. 488(7411), pages 357-360, August.
    3. James O. Thomas & Bart Limburg & Jakub K. Sowa & Kyle Willick & Jonathan Baugh & G. Andrew D. Briggs & Erik M. Gauger & Harry L. Anderson & Jan A. Mol, 2019. "Understanding resonant charge transport through weakly coupled single-molecule junctions," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Wolfgang Wernsdorfer & Núria Aliaga-Alcalde & David N. Hendrickson & George Christou, 2002. "Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets," Nature, Nature, vol. 416(6879), pages 406-409, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Wang & Wangqiang Shen & Yuan Shui & Jun Chen & Huaiqiang Wang & Rui Wang & Yuyuan Qin & Xuefeng Wang & Jianguo Wan & Minhao Zhang & Xing Lu & Tao Yang & Fengqi Song, 2024. "Electrically controlled nonvolatile switching of single-atom magnetism in a Dy@C84 single-molecule transistor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Luan Phan & Sohyeon Seo & Yunhee Cho & Quoc An Vu & Young Hee Lee & Dinh Loc Duong & Hyoyoung Lee & Woo Jong Yu, 2022. "CNT-molecule-CNT (1D-0D-1D) van der Waals integration ferroelectric memory with 1-nm2 junction area," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Giulia Serrano & Lorenzo Poggini & Giuseppe Cucinotta & Andrea Luigi Sorrentino & Niccolò Giaconi & Brunetto Cortigiani & Danilo Longo & Edwige Otero & Philippe Sainctavit & Andrea Caneschi & Matteo M, 2022. "Magnetic molecules as local sensors of topological hysteresis of superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31909-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.