IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26339-z.html
   My bibliography  Save this article

Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid

Author

Listed:
  • R. Žitko

    (Jožef Stefan Institute
    University of Ljubljana)

  • G. G. Blesio

    (Jožef Stefan Institute
    Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario)

  • L. O. Manuel

    (Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario)

  • A. A. Aligia

    (Centro Atómico Bariloche and Instituto Balseiro)

Abstract

The paradigm of Landau’s Fermi liquid theory has been challenged with the finding of a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. A spin-1 two-channel Kondo impurity with anisotropy D has a quantum phase transition between two topologically different Fermi liquids with a peak (dip) in the Fermi level for D Dc). Extending this theory to general multi-orbital problems with finite magnetic field, we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) that were previously described in disconnected and conflicting ways. The differential conductance shows a zero-bias dip that widens when the molecule is lifted from the surface (reducing the Kondo couplings) and is transformed continuously into a peak under an applied magnetic field. We reproduce all features and propose an experiment to induce the topological transition.

Suggested Citation

  • R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26339-z
    DOI: 10.1038/s41467-021-26339-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26339-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26339-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. M. Potok & I. G. Rau & Hadas Shtrikman & Yuval Oreg & D. Goldhaber-Gordon, 2007. "Observation of the two-channel Kondo effect," Nature, Nature, vol. 446(7132), pages 167-171, March.
    2. Kai Yang & Hui Chen & Thomas Pope & Yibin Hu & Liwei Liu & Dongfei Wang & Lei Tao & Wende Xiao & Xiangmin Fei & Yu-Yang Zhang & Hong-Gang Luo & Shixuan Du & Tao Xiang & Werner A. Hofer & Hong-Jun Gao, 2019. "Tunable giant magnetoresistance in a single-molecule junction," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Nicolas Roch & Serge Florens & Vincent Bouchiat & Wolfgang Wernsdorfer & Franck Balestro, 2008. "Quantum phase transition in a single-molecule quantum dot," Nature, Nature, vol. 453(7195), pages 633-637, May.
    4. Wenjie Liang & Matthew P. Shores & Marc Bockrath & Jeffrey R. Long & Hongkun Park, 2002. "Kondo resonance in a single-molecule transistor," Nature, Nature, vol. 417(6890), pages 725-729, June.
    5. Romain Vincent & Svetlana Klyatskaya & Mario Ruben & Wolfgang Wernsdorfer & Franck Balestro, 2012. "Electronic read-out of a single nuclear spin using a molecular spin transistor," Nature, Nature, vol. 488(7411), pages 357-360, August.
    6. R. Hiraoka & E. Minamitani & R. Arafune & N. Tsukahara & S. Watanabe & M. Kawai & N. Takagi, 2017. "Single-molecule quantum dot as a Kondo simulator," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešič & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2024. "Correlation between two distant quasiparticles in separate superconducting islands mediated by a single spin," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. C. Piquard & P. Glidic & C. Han & A. Aassime & A. Cavanna & U. Gennser & Y. Meir & E. Sela & A. Anthore & F. Pierre, 2023. "Observing the universal screening of a Kondo impurity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešić & Peter Krogstrup & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2022. "Excitations in a superconducting Coulombic energy gap," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Giulia Serrano & Lorenzo Poggini & Giuseppe Cucinotta & Andrea Luigi Sorrentino & Niccolò Giaconi & Brunetto Cortigiani & Danilo Longo & Edwige Otero & Philippe Sainctavit & Andrea Caneschi & Matteo M, 2022. "Magnetic molecules as local sensors of topological hysteresis of superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Kenji Shibata & Masaki Yoshida & Kazuhiko Hirakawa & Tomohiro Otsuka & Satria Zulkarnaen Bisri & Yoshihiro Iwasa, 2023. "Single PbS colloidal quantum dot transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Tian Pei & James O. Thomas & Simen Sopp & Ming-Yee Tsang & Nicola Dotti & Jonathan Baugh & Nicholas F. Chilton & Salvador Cardona-Serra & Alejandro Gaita-Ariño & Harry L. Anderson & Lapo Bogani, 2022. "Exchange-induced spin polarization in a single magnetic molecule junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Lev V. Levitin & Harriet van der Vliet & Terje Theisen & Stefanos Dimitriadis & Marijn Lucas & Antonio D. Corcoles & Ján Nyéki & Andrew J. Casey & Graham Creeth & Ian Farrer & David A. Ritchie & James, 2022. "Cooling low-dimensional electron systems into the microkelvin regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26339-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.