IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48856-3.html
   My bibliography  Save this article

Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect

Author

Listed:
  • Xiaokang Yao

    (Nanjing Tech University (NanjingTech)
    Xiamen University)

  • Yuxin Li

    (Nanjing Tech University (NanjingTech))

  • Huifang Shi

    (Nanjing Tech University (NanjingTech))

  • Ze Yu

    (Nanjing Tech University (NanjingTech))

  • Beishen Wu

    (Nanjing Tech University (NanjingTech))

  • Zixing Zhou

    (Xiamen University)

  • Chifeng Zhou

    (Nanjing Tech University (NanjingTech))

  • Xifang Zheng

    (Nanjing Tech University (NanjingTech))

  • Mengting Tang

    (Nanjing Tech University (NanjingTech))

  • Xiao Wang

    (Xiamen University)

  • Huili Ma

    (Nanjing Tech University (NanjingTech))

  • Zhengong Meng

    (Nanjing Tech University (NanjingTech))

  • Wei Huang

    (Nanjing Tech University (NanjingTech)
    Xiamen University
    Northwestern Polytechnical University
    Henan University)

  • Zhongfu An

    (Nanjing Tech University (NanjingTech)
    Xiamen University
    Henan University)

Abstract

Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP. Phosphors show narrowband phosphorescence with full width at half maxima (FWHM) of 30 nm after doping into a rigid benzophenone matrix under ambient conditions, of which the RTP efficiency reaches 51.8%. At 77 K, the FWHM of phosphorescence is only 11 nm. Meanwhile, the colour of narrowband RTP can be tuned from sky blue to green with the modification of methyl groups. Additionally, the potential applications in X-ray imaging and display are demonstrated. This work not only outlines a design principle for developing narrowband RTP materials but also makes a major step forward extending the potential applications of narrowband luminescent materials in optoelectronics.

Suggested Citation

  • Xiaokang Yao & Yuxin Li & Huifang Shi & Ze Yu & Beishen Wu & Zixing Zhou & Chifeng Zhou & Xifang Zheng & Mengting Tang & Xiao Wang & Huili Ma & Zhengong Meng & Wei Huang & Zhongfu An, 2024. "Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48856-3
    DOI: 10.1038/s41467-024-48856-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48856-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48856-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuming Xiao & Heqi Gao & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Xiaoyan Zheng & Zhengxu Cai & Xiaobo Huang & Huayue Wu & Dan Ding, 2022. "Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Tao Wang & Zhubin Hu & Xiancheng Nie & Linkun Huang & Miao Hui & Xiang Sun & Guoqing Zhang, 2021. "Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yong Churl Kim & Kwang Hee Kim & Dae-Yong Son & Dong-Nyuk Jeong & Ja-Young Seo & Yeong Suk Choi & In Taek Han & Sang Yoon Lee & Nam-Gyu Park, 2017. "Printable organometallic perovskite enables large-area, low-dose X-ray imaging," Nature, Nature, vol. 550(7674), pages 87-91, October.
    4. M. A. Baldo & D. F. O'Brien & Y. You & A. Shoustikov & S. Sibley & M. E. Thompson & S. R. Forrest, 1998. "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, Nature, vol. 395(6698), pages 151-154, September.
    5. Xiaokang Yao & Huili Ma & Xiao Wang & He Wang & Qian Wang & Xin Zou & Zhicheng Song & Wenyong Jia & Yuxin Li & Yufeng Mao & Manjeet Singh & Wenpeng Ye & Jian Liang & Yanyun Zhang & Zhuang Liu & Yixiao, 2022. "Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Tianwen Zhu & Tianjia Yang & Qiang Zhang & Wang Zhang Yuan, 2022. "Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Dian-Xue Ma & Zhong-Qiu Li & Kun Tang & Zhong-Liang Gong & Jiang-Yang Shao & Yu-Wu Zhong, 2024. "Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Guangxin Yang & Subin Hao & Xin Deng & Xinluo Song & Bo Sun & Woo Jin Hyun & Ming-De Li & Li Dang, 2024. "Efficient intersystem crossing and tunable ultralong organic room-temperature phosphorescence via doping polyvinylpyrrolidone with polyaromatic hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. He Wang & Huili Ma & Nan Gan & Kai Qin & Zhicheng Song & Anqi Lv & Kai Wang & Wenpeng Ye & Xiaokang Yao & Chifeng Zhou & Xiao Wang & Zixing Zhou & Shilin Yang & Lirong Yang & Cuimei Bo & Huifang Shi &, 2024. "Abnormal thermally-stimulated dynamic organic phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yanliang Liu & Chaosong Gao & Dong Li & Xin Zhang & Jiongtao Zhu & Meng Wu & Wenjun Liu & Tongyu Shi & Xingchen He & Jiahong Wang & Hao Huang & Zonghai Sheng & Dong Liang & Xue-Feng Yu & Hairong Zheng, 2024. "Dynamic X-ray imaging with screen-printed perovskite CMOS array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Jincong Pang & Haodi Wu & Hao Li & Tong Jin & Jiang Tang & Guangda Niu, 2024. "Reconfigurable perovskite X-ray detector for intelligent imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Yao Shi & Joshua S. Derasp & Tristan Maschmeyer & Jason E. Hein, 2024. "Phase transfer catalysts shift the pathway to transmetalation in biphasic Suzuki-Miyaura cross-couplings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Robert A. Jagt & Ivona Bravić & Lissa Eyre & Krzysztof Gałkowski & Joanna Borowiec & Kavya Reddy Dudipala & Michał Baranowski & Mateusz Dyksik & Tim W. J. Goor & Theo Kreouzis & Ming Xiao & Adrian Bev, 2023. "Layered BiOI single crystals capable of detecting low dose rates of X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Xin Ji & Weiguo Tian & Kunfeng Jin & Huailing Diao & Xin Huang & Guangjie Song & Jun Zhang, 2022. "Anionic polymerization of nonaromatic maleimide to achieve full-color nonconventional luminescence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Danman Guo & Wen Wang & Kaimin Zhang & Jinzheng Chen & Yuyuan Wang & Tianyi Wang & Wangmeng Hou & Zhen Zhang & Huahua Huang & Zhenguo Chi & Zhiyong Yang, 2024. "Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Jaewook Kim & Joonghyuk Kim & Yongjun Kim & Youngmok Son & Youngsik Shin & Hye Jin Bae & Ji Whan Kim & Sungho Nam & Yongsik Jung & Hyeonsu Kim & Sungwoo Kang & Yoonsoo Jung & Kyunghoon Lee & Hyeonho C, 2023. "Critical role of electrons in the short lifetime of blue OLEDs," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Bo Song & Jianyu Zhang & Jiadong Zhou & Anjun Qin & Jacky W. Y. Lam & Ben Zhong Tang, 2023. "Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Xiaolu Zhou & Xue Bai & Fangjian Shang & Heng-Yi Zhang & Li-Hua Wang & Xiufang Xu & Yu Liu, 2024. "Supramolecular assembly activated single-molecule phosphorescence resonance energy transfer for near-infrared targeted cell imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Nan Zhang & Lei Qu & Shuheng Dai & Guohua Xie & Chunmiao Han & Jing Zhang & Ran Huo & Huan Hu & Qiushui Chen & Wei Huang & Hui Xu, 2023. "Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Xiao Tan & Dehai Dou & Lay-Lay Chua & Rui-Qi Png & Daniel G. Congrave & Hugo Bronstein & Martin Baumgarten & Yungui Li & Paul W. M. Blom & Gert-Jan A. H. Wetzelaer, 2024. "Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48856-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.