IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21676-5.html
   My bibliography  Save this article

Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling

Author

Listed:
  • Tao Wang

    (University of Science and Technology of China)

  • Zhubin Hu

    (NYU Shanghai)

  • Xiancheng Nie

    (University of Science and Technology of China)

  • Linkun Huang

    (University of Science and Technology of China)

  • Miao Hui

    (University of Science and Technology of China)

  • Xiang Sun

    (NYU Shanghai
    New York University)

  • Guoqing Zhang

    (University of Science and Technology of China)

Abstract

Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.

Suggested Citation

  • Tao Wang & Zhubin Hu & Xiancheng Nie & Linkun Huang & Miao Hui & Xiang Sun & Guoqing Zhang, 2021. "Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21676-5
    DOI: 10.1038/s41467-021-21676-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21676-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21676-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. He Wang & Huili Ma & Nan Gan & Kai Qin & Zhicheng Song & Anqi Lv & Kai Wang & Wenpeng Ye & Xiaokang Yao & Chifeng Zhou & Xiao Wang & Zixing Zhou & Shilin Yang & Lirong Yang & Cuimei Bo & Huifang Shi &, 2024. "Abnormal thermally-stimulated dynamic organic phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Fei Nie & Ke-Zhi Wang & Dongpeng Yan, 2023. "Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal–organic complexes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xin Zhang & Yaohui Cheng & Jingxuan You & Jinming Zhang & Chunchun Yin & Jun Zhang, 2022. "Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21676-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.