IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45811-0.html
   My bibliography  Save this article

Abnormal thermally-stimulated dynamic organic phosphorescence

Author

Listed:
  • He Wang

    (Nanjing Tech University)

  • Huili Ma

    (Nanjing Tech University)

  • Nan Gan

    (Northwestern Polytechnical University)

  • Kai Qin

    (Nanjing Tech University)

  • Zhicheng Song

    (Nanjing Tech University)

  • Anqi Lv

    (Nanjing Tech University)

  • Kai Wang

    (Nanjing Tech University)

  • Wenpeng Ye

    (Nanjing Tech University)

  • Xiaokang Yao

    (Nanjing Tech University)

  • Chifeng Zhou

    (Nanjing Tech University)

  • Xiao Wang

    (Xiamen University)

  • Zixing Zhou

    (Nanjing Tech University)

  • Shilin Yang

    (Nanjing Tech University)

  • Lirong Yang

    (Nanjing Tech University)

  • Cuimei Bo

    (Nanjing Tech University)

  • Huifang Shi

    (Nanjing Tech University)

  • Fengwei Huo

    (Nanjing Tech University)

  • Gongqiang Li

    (Nanjing Tech University)

  • Wei Huang

    (Nanjing Tech University
    Northwestern Polytechnical University
    Xiamen University
    Nanjing University of Posts & Telecommunications)

  • Zhongfu An

    (Nanjing Tech University
    Xiamen University)

Abstract

Dynamic luminescence behavior by external stimuli, such as light, thermal field, electricity, mechanical force, etc., endows the materials with great promise in optoelectronic applications. Upon thermal stimulus, the emission is inevitably quenched due to intensive non-radiative transition, especially for phosphorescence at high temperature. Herein, we report an abnormal thermally-stimulated phosphorescence behavior in a series of organic phosphors. As temperature changes from 198 to 343 K, the phosphorescence at around 479 nm gradually enhances for the model phosphor, of which the phosphorescent colors are tuned from yellow to cyan-blue. Furthermore, we demonstrate the potential applications of such dynamic emission for smart dyes and colorful afterglow displays. Our results would initiate the exploration of dynamic high-temperature phosphorescence for applications in smart optoelectronics. This finding not only contributes to an in-depth understanding of the thermally-stimulated phosphorescence, but also paves the way toward the development of smart materials for applications in optoelectronics.

Suggested Citation

  • He Wang & Huili Ma & Nan Gan & Kai Qin & Zhicheng Song & Anqi Lv & Kai Wang & Wenpeng Ye & Xiaokang Yao & Chifeng Zhou & Xiao Wang & Zixing Zhou & Shilin Yang & Lirong Yang & Cuimei Bo & Huifang Shi &, 2024. "Abnormal thermally-stimulated dynamic organic phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45811-0
    DOI: 10.1038/s41467-024-45811-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45811-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45811-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuming Xiao & Heqi Gao & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Xiaoyan Zheng & Zhengxu Cai & Xiaobo Huang & Huayue Wu & Dan Ding, 2022. "Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xu Cao & Srinivasa Rao Allu & Shudong Jiang & Mengyu Jia & Jason R. Gunn & Cuiping Yao & Ethan P. LaRochelle & Jennifer R. Shell & Petr Bruza & David J. Gladstone & Lesley A. Jarvis & Jie Tian & Serge, 2020. "Tissue pO2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Zhiwei Hao & Asieh Ghanekarade & Ningtao Zhu & Katelyn Randazzo & Daisuke Kawaguchi & Keiji Tanaka & Xinping Wang & David S. Simmons & Rodney D. Priestley & Biao Zuo, 2021. "Mobility gradients yield rubbery surfaces on top of polymer glasses," Nature, Nature, vol. 596(7872), pages 372-376, August.
    4. Hai-Tao Feng & Jiajie Zeng & Ping-An Yin & Xue-Dong Wang & Qian Peng & Zujin Zhao & Jacky W. Y. Lam & Ben Zhong Tang, 2020. "Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Xuepeng Zhang & Lili Du & Weijun Zhao & Zheng Zhao & Yu Xiong & Xuewen He & Peng Fei Gao & Parvej Alam & Can Wang & Zhen Li & Jing Leng & Junxue Liu & Chuanyao Zhou & Jacky W. Y. Lam & David Lee Phill, 2019. "Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Tao Wang & Zhubin Hu & Xiancheng Nie & Linkun Huang & Miao Hui & Xiang Sun & Guoqing Zhang, 2021. "Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Akito Sakai & Susumu Minami & Takashi Koretsune & Taishi Chen & Tomoya Higo & Yangming Wang & Takuya Nomoto & Motoaki Hirayama & Shinji Miwa & Daisuke Nishio-Hamane & Fumiyuki Ishii & Ryotaro Arita & , 2020. "Iron-based binary ferromagnets for transverse thermoelectric conversion," Nature, Nature, vol. 581(7806), pages 53-57, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xue Chen & Mengfen Che & Weidong Xu & Zhongbin Wu & Yung Doug Suh & Suli Wu & Xiaowang Liu & Wei Huang, 2024. "Matrix-induced defects and molecular doping in the afterglow of SiO2 microparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xiaokang Yao & Yuxin Li & Huifang Shi & Ze Yu & Beishen Wu & Zixing Zhou & Chifeng Zhou & Xifang Zheng & Mengting Tang & Xiao Wang & Huili Ma & Zhengong Meng & Wei Huang & Zhongfu An, 2024. "Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Houkuan Tian & Jintian Luo & Qiyun Tang & Hao Zha & Rodney D. Priestley & Wenbing Hu & Biao Zuo, 2024. "Intramolecular dynamic coupling slows surface relaxation of polymer glasses," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Ravi Gautam & Takamasa Hirai & Abdulkareem Alasli & Hosei Nagano & Tadakatsu Ohkubo & Ken-ichi Uchida & Hossein Sepehri-Amin, 2024. "Creation of flexible spin-caloritronic material with giant transverse thermoelectric conversion by nanostructure engineering," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Wenxiang Wang & Shanwen Wang & Yan Gu & Jinyu Zhou & Jiachi Zhang, 2024. "Contact-separation-induced self-recoverable mechanoluminescence of CaF2:Tb3+/PDMS elastomer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zongliang Xie & Yufeng Xue & Xianhe Zhang & Junru Chen & Zesen Lin & Bin Liu, 2024. "Isostructural doping for organic persistent mechanoluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    9. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Hikari Manako & Shoya Ohsumi & Yoshiki J. Sato & R. Okazaki & D. Aoki, 2024. "Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Yao Shi & Joshua S. Derasp & Tristan Maschmeyer & Jason E. Hein, 2024. "Phase transfer catalysts shift the pathway to transmetalation in biphasic Suzuki-Miyaura cross-couplings," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Dian-Xue Ma & Zhong-Qiu Li & Kun Tang & Zhong-Liang Gong & Jiang-Yang Shao & Yu-Wu Zhong, 2024. "Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Danman Guo & Wen Wang & Kaimin Zhang & Jinzheng Chen & Yuyuan Wang & Tianyi Wang & Wangmeng Hou & Zhen Zhang & Huahua Huang & Zhenguo Chi & Zhiyong Yang, 2024. "Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Alexander N. Solodukhin & Yuriy N. Luponosov & Artur L. Mannanov & Petr S. Savchenko & Artem V. Bakirov & Maxim A. Shcherbina & Sergei N. Chvalun & Dmitry Yu. Paraschuk & Sergey A. Ponomarenko, 2021. "Branched Electron-Donor Core Effect in D-π-A Star-Shaped Small Molecules on Their Properties and Performance in Single-Component and Bulk-Heterojunction Organic Solar Cells †," Energies, MDPI, vol. 14(12), pages 1-14, June.
    18. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Xiaolu Zhou & Xue Bai & Fangjian Shang & Heng-Yi Zhang & Li-Hua Wang & Xiufang Xu & Yu Liu, 2024. "Supramolecular assembly activated single-molecule phosphorescence resonance energy transfer for near-infrared targeted cell imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Debasish Barman & Mari Annadhasan & Anil Parsram Bidkar & Pachaiyappan Rajamalli & Debika Barman & Siddhartha Sankar Ghosh & Rajadurai Chandrasekar & Parameswar Krishnan Iyer, 2023. "Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45811-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.