IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48791-3.html
   My bibliography  Save this article

Enhanced quantum state transfer by circumventing quantum chaotic behavior

Author

Listed:
  • Liang Xiang

    (Zhejiang University
    Zhejiang University)

  • Jiachen Chen

    (Zhejiang University
    Zhejiang University)

  • Zitian Zhu

    (Zhejiang University
    Zhejiang University)

  • Zixuan Song

    (Zhejiang University
    Zhejiang University)

  • Zehang Bao

    (Zhejiang University
    Zhejiang University)

  • Xuhao Zhu

    (Zhejiang University
    Zhejiang University)

  • Feitong Jin

    (Zhejiang University
    Zhejiang University)

  • Ke Wang

    (Zhejiang University
    Zhejiang University)

  • Shibo Xu

    (Zhejiang University
    Zhejiang University)

  • Yiren Zou

    (Zhejiang University
    Zhejiang University)

  • Hekang Li

    (Zhejiang University
    Zhejiang University)

  • Zhen Wang

    (Zhejiang University
    Zhejiang University)

  • Chao Song

    (Zhejiang University
    Zhejiang University)

  • Alexander Yue

    (University of California)

  • Justine Partridge

    (University of California)

  • Qiujiang Guo

    (Zhejiang University
    Zhejiang University)

  • Rubem Mondaini

    (Beijing Computational Science Research Center
    University of Houston
    University of Houston)

  • H. Wang

    (Zhejiang University
    Zhejiang University)

  • Richard T. Scalettar

    (University of California)

Abstract

The ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state quantum systems are largely confined to small chains with few qubits, often relying upon non-generic schemes. Here, by using a superconducting quantum circuit featuring thirty-six tunable qubits, accompanied by general optimization procedures deeply rooted in overcoming quantum chaotic behavior, we demonstrate a scalable protocol for transferring few-particle quantum states in a two-dimensional quantum network. These include single-qubit excitation, two-qubit entangled states, and two excitations for which many-body effects are present. Our approach, combined with the quantum circuit’s versatility, paves the way to short-distance quantum communication for connecting distributed quantum processors or registers, even if hampered by inherent imperfections in actual quantum devices.

Suggested Citation

  • Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48791-3
    DOI: 10.1038/s41467-024-48791-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48791-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48791-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sepehr Ebadi & Tout T. Wang & Harry Levine & Alexander Keesling & Giulia Semeghini & Ahmed Omran & Dolev Bluvstein & Rhine Samajdar & Hannes Pichler & Wen Wei Ho & Soonwon Choi & Subir Sachdev & Marku, 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator," Nature, Nature, vol. 595(7866), pages 227-232, July.
    2. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    3. J. Zhang & G. Pagano & P. W. Hess & A. Kyprianidis & P. Becker & H. Kaplan & A. V. Gorshkov & Z.-X. Gong & C. Monroe, 2017. "Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator," Nature, Nature, vol. 551(7682), pages 601-604, November.
    4. Xiao Xue & Maximilian Russ & Nodar Samkharadze & Brennan Undseth & Amir Sammak & Giordano Scappucci & Lieven M. K. Vandersypen, 2022. "Quantum logic with spin qubits crossing the surface code threshold," Nature, Nature, vol. 601(7893), pages 343-347, January.
    5. Dik Bouwmeester & Jian-Wei Pan & Klaus Mattle & Manfred Eibl & Harald Weinfurter & Anton Zeilinger, 1997. "Experimental quantum teleportation," Nature, Nature, vol. 390(6660), pages 575-579, December.
    6. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    7. J. Yoneda & W. Huang & M. Feng & C. H. Yang & K. W. Chan & T. Tanttu & W. Gilbert & R. C. C. Leon & F. E. Hudson & K. M. Itoh & A. Morello & S. D. Bartlett & A. Laucht & A. Saraiva & A. S. Dzurak, 2021. "Coherent spin qubit transport in silicon," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Yadav P. Kandel & Haifeng Qiao & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & John M. Nichol, 2021. "Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Robert J. Chapman & Matteo Santandrea & Zixin Huang & Giacomo Corrielli & Andrea Crespi & Man-Hong Yung & Roberto Osellame & Alberto Peruzzo, 2016. "Experimental perfect state transfer of an entangled photonic qubit," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    10. Yadav P. Kandel & Haifeng Qiao & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & John M. Nichol, 2019. "Coherent spin-state transfer via Heisenberg exchange," Nature, Nature, vol. 573(7775), pages 553-557, September.
    11. Cornelis J. van Diepen & Tzu-Kan Hsiao & Uditendu Mukhopadhyay & Christian Reichl & Werner Wegscheider & Lieven M. K. Vandersypen, 2021. "Electron cascade for distant spin readout," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    12. Haifeng Qiao & Yadav P. Kandel & Sreenath K. Manikandan & Andrew N. Jordan & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & John M. Nichol, 2020. "Conditional teleportation of quantum-dot spin states," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    13. Takashi Nakajima & Matthieu R. Delbecq & Tomohiro Otsuka & Shinichi Amaha & Jun Yoneda & Akito Noiri & Kenta Takeda & Giles Allison & Arne Ludwig & Andreas D. Wieck & Xuedong Hu & Franco Nori & Seigo , 2018. "Coherent transfer of electron spin correlations assisted by dephasing noise," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    14. Sheng-Kai Liao & Wen-Qi Cai & Wei-Yue Liu & Liang Zhang & Yang Li & Ji-Gang Ren & Juan Yin & Qi Shen & Yuan Cao & Zheng-Ping Li & Feng-Zhi Li & Xia-Wei Chen & Li-Hua Sun & Jian-Jun Jia & Jin-Cai Wu & , 2017. "Satellite-to-ground quantum key distribution," Nature, Nature, vol. 549(7670), pages 43-47, September.
    15. Ji-Gang Ren & Ping Xu & Hai-Lin Yong & Liang Zhang & Sheng-Kai Liao & Juan Yin & Wei-Yue Liu & Wen-Qi Cai & Meng Yang & Li Li & Kui-Xing Yang & Xuan Han & Yong-Qiang Yao & Ji Li & Hai-Yan Wu & Song Wa, 2017. "Ground-to-satellite quantum teleportation," Nature, Nature, vol. 549(7670), pages 70-73, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    4. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Naceur Gaaloul & Matthias Meister & Robin Corgier & Annie Pichery & Patrick Boegel & Waldemar Herr & Holger Ahlers & Eric Charron & Jason R. Williams & Robert J. Thompson & Wolfgang P. Schleich & Erns, 2022. "A space-based quantum gas laboratory at picokelvin energy scales," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Florian Fesquet & Fabian Kronowetter & Michael Renger & Wun Kwan Yam & Simon Gandorfer & Kunihiro Inomata & Yasunobu Nakamura & Achim Marx & Rudolf Gross & Kirill G. Fedorov, 2024. "Demonstration of microwave single-shot quantum key distribution," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Sebastian Philipp Neumann & Alexander Buchner & Lukas Bulla & Martin Bohmann & Rupert Ursin, 2022. "Continuous entanglement distribution over a transnational 248 km fiber link," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. repec:arp:sjossm:2021:p:93-99 is not listed on IDEAS
    14. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    16. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    18. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Roman M. Wyss & Günter Kewes & Pietro Marabotti & Stefan M. Koepfli & Karl-Philipp Schlichting & Markus Parzefall & Eric Bonvin & Martin F. Sarott & Morgan Trassin & Maximilian Oezkent & Chen-Hsun Lu , 2024. "Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    21. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48791-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.