IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56451-3.html
   My bibliography  Save this article

Observation of minimal and maximal speed limits for few and many-body states

Author

Listed:
  • Zitian Zhu

    (Zhejiang University
    Zhejiang University)

  • Lei Gao

    (Beijing Computational Science Research Center)

  • Zehang Bao

    (Zhejiang University
    Zhejiang University)

  • Liang Xiang

    (Zhejiang University
    Zhejiang University)

  • Zixuan Song

    (Zhejiang University
    Zhejiang University)

  • Shibo Xu

    (Zhejiang University
    Zhejiang University)

  • Ke Wang

    (Zhejiang University
    Zhejiang University)

  • Jiachen Chen

    (Zhejiang University
    Zhejiang University)

  • Feitong Jin

    (Zhejiang University
    Zhejiang University)

  • Xuhao Zhu

    (Zhejiang University
    Zhejiang University)

  • Yu Gao

    (Zhejiang University
    Zhejiang University)

  • Yaozu Wu

    (Zhejiang University
    Zhejiang University)

  • Chuanyu Zhang

    (Zhejiang University
    Zhejiang University)

  • Ning Wang

    (Zhejiang University
    Zhejiang University)

  • Yiren Zou

    (Zhejiang University
    Zhejiang University)

  • Ziqi Tan

    (Zhejiang University
    Zhejiang University)

  • Aosai Zhang

    (Zhejiang University
    Zhejiang University)

  • Zhengyi Cui

    (Zhejiang University
    Zhejiang University)

  • Fanhao Shen

    (Zhejiang University
    Zhejiang University)

  • Jiarun Zhong

    (Zhejiang University
    Zhejiang University)

  • Tingting Li

    (Zhejiang University
    Zhejiang University)

  • Jinfeng Deng

    (Zhejiang University
    Zhejiang University)

  • Xu Zhang

    (Zhejiang University
    Zhejiang University)

  • Hang Dong

    (Zhejiang University
    Zhejiang University)

  • Pengfei Zhang

    (Zhejiang University
    Zhejiang University)

  • Zhen Wang

    (Zhejiang University
    Zhejiang University
    Hefei National Laboratory)

  • Chao Song

    (Zhejiang University
    Zhejiang University
    Hefei National Laboratory)

  • Chen Cheng

    (Lanzhou University)

  • Qiujiang Guo

    (Zhejiang University
    Zhejiang University
    Hefei National Laboratory)

  • Hekang Li

    (Zhejiang University
    Zhejiang University)

  • H. Wang

    (Zhejiang University
    Zhejiang University
    Hefei National Laboratory)

  • Hai-Qing Lin

    (Zhejiang University
    Beijing Computational Science Research Center)

  • Rubem Mondaini

    (University of Houston
    University of Houston)

Abstract

Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results show a comprehensive experimental characterization of quantum speed limits and enhance the understanding for their subsequent study in engineered non-unitary conditions.

Suggested Citation

  • Zitian Zhu & Lei Gao & Zehang Bao & Liang Xiang & Zixuan Song & Shibo Xu & Ke Wang & Jiachen Chen & Feitong Jin & Xuhao Zhu & Yu Gao & Yaozu Wu & Chuanyu Zhang & Ning Wang & Yiren Zou & Ziqi Tan & Aos, 2025. "Observation of minimal and maximal speed limits for few and many-body states," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56451-3
    DOI: 10.1038/s41467-025-56451-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56451-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56451-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Brendan Saxberg & Andrei Vrajitoarea & Gabrielle Roberts & Margaret G. Panetta & Jonathan Simon & David I. Schuster, 2022. "Disorder-assisted assembly of strongly correlated fluids of light," Nature, Nature, vol. 612(7940), pages 435-441, December.
    3. Yoshihiko Hasegawa, 2023. "Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Marc Cheneau & Peter Barmettler & Dario Poletti & Manuel Endres & Peter Schauß & Takeshi Fukuhara & Christian Gross & Immanuel Bloch & Corinna Kollath & Stefan Kuhr, 2012. "Light-cone-like spreading of correlations in a quantum many-body system," Nature, Nature, vol. 481(7382), pages 484-487, January.
    5. Marcos Rigol & Vanja Dunjko & Maxim Olshanii, 2008. "Thermalization and its mechanism for generic isolated quantum systems," Nature, Nature, vol. 452(7189), pages 854-858, April.
    6. Amir H. Karamlou & Ilan T. Rosen & Sarah E. Muschinske & Cora N. Barrett & Agustin Di Paolo & Leon Ding & Patrick M. Harrington & Max Hays & Rabindra Das & David K. Kim & Bethany M. Niedzielski & Megh, 2024. "Probing entanglement in a 2D hard-core Bose–Hubbard lattice," Nature, Nature, vol. 629(8012), pages 561-566, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takato Yoshimura & Lucas Sá, 2024. "Robustness of quantum chaos and anomalous relaxation in open quantum circuits," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ferenc Iglói & Csaba Zoltán Király, 2024. "Entanglement detection in postquench nonequilibrium states: thermal Gibbs vs. generalized Gibbs ensemble," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
    3. Lennart Dabelow & Peter Reimann, 2024. "Stalled response near thermal equilibrium in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Filiberto Ares & Sara Murciano & Pasquale Calabrese, 2023. "Entanglement asymmetry as a probe of symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Sebastian Leontica & Andrew G. Green, 2025. "Entanglement growth from squeezing on the MPS manifold," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    6. Yun-Hao Shi & Zheng-Hang Sun & Yong-Yi Wang & Zheng-An Wang & Yu-Ran Zhang & Wei-Guo Ma & Hao-Tian Liu & Kui Zhao & Jia-Cheng Song & Gui-Han Liang & Zheng-Yang Mei & Jia-Chi Zhang & Hao Li & Chi-Tong , 2024. "Probing spin hydrodynamics on a superconducting quantum simulator," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Shraddha Sharma & Tanay Nag & Atanu Rajak & Souvik Bandyopadhyay & Sourav Bhattacharjee & Somnath Maity & Utso Bhattacharya, 2024. "Unquenched—a memoir on non-equilibrium dynamics of quantum many-body systems: honoring Amit Dutta," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-16, July.
    9. Qi-Ming Chen & Michael Fischer & Yuki Nojiri & Michael Renger & Edwar Xie & Matti Partanen & Stefan Pogorzalek & Kirill G. Fedorov & Achim Marx & Frank Deppe & Rudolf Gross, 2023. "Quantum behavior of the Duffing oscillator at the dissipative phase transition," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Wenhui Xu & Chenwei Lv & Qi Zhou, 2024. "Multipolar condensates and multipolar Josephson effects," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Pengfei Zhang & Yu Gao & Xiansong Xu & Ning Wang & Hang Dong & Chu Guo & Jinfeng Deng & Xu Zhang & Jiachen Chen & Shibo Xu & Ke Wang & Yaozu Wu & Chuanyu Zhang & Feitong Jin & Xuhao Zhu & Aosai Zhang , 2024. "Emergence of steady quantum transport in a superconducting processor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Shayan Majidy, 2024. "Noncommuting charges can remove non-stationary quantum many-body dynamics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Tomotaka Kuwahara & Tan Van Vu & Keiji Saito, 2024. "Effective light cone and digital quantum simulation of interacting bosons," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Lozano-Negro, Fabricio S. & Zangara, Pablo R. & Pastawski, Horacio M., 2021. "Ergodicity breaking in an incommensurate system observed by OTOCs and loschmidt echoes: From quantum diffusion to sub-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. A. Scheie & P. Laurell & B. Lake & S. E. Nagler & M. B. Stone & J-S Caux & D. A. Tennant, 2022. "Quantum wake dynamics in Heisenberg antiferromagnetic chains," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Garrahan, Juan P., 2018. "Aspects of non-equilibrium in classical and quantum systems: Slow relaxation and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 130-154.
    20. Sourav Bhattacharjee & Souvik Bandyopadhyay & Anatoli Polkovnikov, 2024. "Sharp detection of the onset of Floquet heating using eigenstate sensitivity," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56451-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.