IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v5y2020i3p84-d413006.html
   My bibliography  Save this article

Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions

Author

Listed:
  • Maryam Moghimi

    (Center on Stochastic Modeling, Optimization, and Statistics (COSMOS), the University of Texas at Arlington, Arlington, TX 76013, USA
    This paper was part of the author’s doctoral dissertation of May 2020.
    The two authors contributed equally to this paper.)

  • Herbert W. Corley

    (Center on Stochastic Modeling, Optimization, and Statistics (COSMOS), the University of Texas at Arlington, Arlington, TX 76013, USA
    The two authors contributed equally to this paper.)

Abstract

In this paper, we study the information lost when a real-valued statistic is used to reduce or summarize sample data from a discrete random variable with a one-dimensional parameter. We compare the probability that a random sample gives a particular data set to the probability of the statistic’s value for this data set. We focus on sufficient statistics for the parameter of interest and develop a general formula independent of the parameter for the Shannon information lost when a data sample is reduced to such a summary statistic. We also develop a measure of entropy for this lost information that depends only on the real-valued statistic but neither the parameter nor the data. Our approach would also work for non-sufficient statistics, but the lost information and associated entropy would involve the parameter. The method is applied to three well-known discrete distributions to illustrate its implementation.

Suggested Citation

  • Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
  • Handle: RePEc:gam:jdataj:v:5:y:2020:i:3:p:84-:d:413006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/5/3/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/5/3/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    2. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    4. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Daniel Christian Lawo & Rana Abu Bakar & Abraham Cano Aguilera & Filippo Cugini & José Luis Imaña & Idelfonso Tafur Monroy & Juan Jose Vegas Olmos, 2024. "Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel," Future Internet, MDPI, vol. 16(8), pages 1-22, August.
    8. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    11. Piotr Tomasz Makowski & Yuya Kajikawa, 2021. "Automation-driven innovation management? Toward Innovation-Automation-Strategy cycle," Papers 2103.02395, arXiv.org.
    12. Yun-Hao Shi & Zheng-Hang Sun & Yong-Yi Wang & Zheng-An Wang & Yu-Ran Zhang & Wei-Guo Ma & Hao-Tian Liu & Kui Zhao & Jia-Cheng Song & Gui-Han Liang & Zheng-Yang Mei & Jia-Chi Zhang & Hao Li & Chi-Tong , 2024. "Probing spin hydrodynamics on a superconducting quantum simulator," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    15. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.
    16. Beatrice Polacchi & Dominik Leichtle & Leonardo Limongi & Gonzalo Carvacho & Giorgio Milani & Nicolò Spagnolo & Marc Kaplan & Fabio Sciarrino & Elham Kashefi, 2023. "Multi-client distributed blind quantum computation with the Qline architecture," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Hanling Lin & Xiaofeng Wang & Min Li, 2023. "Post-Quantum Signature Scheme Based on the Root Extraction Problem over Mihailova Subgroups of Braid Groups," Mathematics, MDPI, vol. 11(13), pages 1-12, June.
    18. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. George Gillard & Edmund Clarke & Evgeny A. Chekhovich, 2022. "Harnessing many-body spin environment for long coherence storage and high-fidelity single-shot qubit readout," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Sainan Huai & Kunliang Bu & Xiu Gu & Zhenxing Zhang & Shuoming An & Xiaopei Yang & Yuan Li & Tianqi Cai & Yicong Zheng, 2024. "Fast joint parity measurement via collective interactions induced by stimulated emission," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:5:y:2020:i:3:p:84-:d:413006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.