IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v551y2017i7682d10.1038_nature24654.html
   My bibliography  Save this article

Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator

Author

Listed:
  • J. Zhang

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • G. Pagano

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • P. W. Hess

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • A. Kyprianidis

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • P. Becker

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • H. Kaplan

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • A. V. Gorshkov

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park)

  • Z.-X. Gong

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park
    Colorado School of Mines)

  • C. Monroe

    (Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, College Park
    IonQ, Inc., College Park)

Abstract

Many-body dynamical phases in an Ising-like quantum spin model with long-range interactions are observed by measuring correlations in single shots, using a quantum simulator composed of 53 qubits.

Suggested Citation

  • J. Zhang & G. Pagano & P. W. Hess & A. Kyprianidis & P. Becker & H. Kaplan & A. V. Gorshkov & Z.-X. Gong & C. Monroe, 2017. "Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator," Nature, Nature, vol. 551(7682), pages 601-604, November.
  • Handle: RePEc:nat:nature:v:551:y:2017:i:7682:d:10.1038_nature24654
    DOI: 10.1038/nature24654
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24654
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yuqian Zhao & Zhaohua Ma & Zhangzhen He & Haijun Liao & Yan-Cheng Wang & Junfeng Wang & Yuesheng Li, 2024. "Quantum annealing of a frustrated magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Benedikt Fauseweh, 2024. "Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yukalov, V.I. & Yukalova, E.P. & Sornette, D., 2022. "Role of collective information in networks of quantum operating agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:551:y:2017:i:7682:d:10.1038_nature24654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.