IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55342-3.html
   My bibliography  Save this article

Verifiable measurement-based quantum random sampling with trapped ions

Author

Listed:
  • Martin Ringbauer

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Marcel Hinsche

    (Freie Universität Berlin)

  • Thomas Feldker

    (Universität Innsbruck, Institut für Experimentalphysik
    Alpine Quantum Technologies GmbH)

  • Paul K. Faehrmann

    (Freie Universität Berlin)

  • Juani Bermejo-Vega

    (Freie Universität Berlin
    Universidad de Granada
    Campus Universitario Fuentenueva)

  • Claire L. Edmunds

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Lukas Postler

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Roman Stricker

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Christian D. Marciniak

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Michael Meth

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Ivan Pogorelov

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Rainer Blatt

    (Universität Innsbruck, Institut für Experimentalphysik
    Alpine Quantum Technologies GmbH
    Österreichische Akademie der Wissenschaften)

  • Philipp Schindler

    (Universität Innsbruck, Institut für Experimentalphysik)

  • Jens Eisert

    (Freie Universität Berlin
    Helmholtz-Zentrum Berlin für Materialien und Energie
    Fraunhofer Heinrich Hertz Institute)

  • Thomas Monz

    (Universität Innsbruck, Institut für Experimentalphysik
    Alpine Quantum Technologies GmbH)

  • Dominik Hangleiter

    (University of Maryland & NIST
    University of Maryland & NIST)

Abstract

Quantum computers are now on the brink of outperforming their classical counterparts. One way to demonstrate the advantage of quantum computation is through quantum random sampling performed on quantum computing devices. However, existing tools for verifying that a quantum device indeed performed the classically intractable sampling task are either impractical or not scalable to the quantum advantage regime. The verification problem thus remains an outstanding challenge. Here, we experimentally demonstrate efficiently verifiable quantum random sampling in the measurement-based model of quantum computation on a trapped-ion quantum processor. We create and sample from random cluster states, which are at the heart of measurement-based computing, up to a size of 4 × 4 qubits. By exploiting the structure of these states, we are able to recycle qubits during the computation to sample from entangled cluster states that are larger than the qubit register. We then efficiently estimate the fidelity to verify the prepared states—in single instances and on average—and compare our results to cross-entropy benchmarking. Finally, we study the effect of experimental noise on the certificates. Our results and techniques provide a feasible path toward a verified demonstration of a quantum advantage.

Suggested Citation

  • Martin Ringbauer & Marcel Hinsche & Thomas Feldker & Paul K. Faehrmann & Juani Bermejo-Vega & Claire L. Edmunds & Lukas Postler & Roman Stricker & Christian D. Marciniak & Michael Meth & Ivan Pogorelo, 2025. "Verifiable measurement-based quantum random sampling with trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55342-3
    DOI: 10.1038/s41467-024-55342-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55342-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55342-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Joonhee Choi & Adam L. Shaw & Ivaylo S. Madjarov & Xin Xie & Ran Finkelstein & Jacob P. Covey & Jordan S. Cotler & Daniel K. Mark & Hsin-Yuan Huang & Anant Kale & Hannes Pichler & Fernando G. S. L. Br, 2023. "Preparing random states and benchmarking with many-body quantum chaos," Nature, Nature, vol. 613(7944), pages 468-473, January.
    3. D. Istrati & Y. Pilnyak & J. C. Loredo & C. Antón & N. Somaschi & P. Hilaire & H. Ollivier & M. Esmann & L. Cohen & L. Vidro & C. Millet & A. Lemaître & I. Sagnes & A. Harouri & L. Lanco & P. Senellar, 2020. "Sequential generation of linear cluster states from a single photon emitter," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Lars S. Madsen & Fabian Laudenbach & Mohsen Falamarzi. Askarani & Fabien Rortais & Trevor Vincent & Jacob F. F. Bulmer & Filippo M. Miatto & Leonhard Neuhaus & Lukas G. Helt & Matthew J. Collins & Adr, 2022. "Quantum computational advantage with a programmable photonic processor," Nature, Nature, vol. 606(7912), pages 75-81, June.
    5. Roman Stricker & Davide Vodola & Alexander Erhard & Lukas Postler & Michael Meth & Martin Ringbauer & Philipp Schindler & Thomas Monz & Markus Müller & Rainer Blatt, 2020. "Experimental deterministic correction of qubit loss," Nature, Nature, vol. 585(7824), pages 207-210, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    2. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.
    4. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    5. Ojas Parekh, 2023. "Synergies Between Operations Research and Quantum Information Science," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 266-273, March.
    6. Vladimir Skavysh & Sofia Priazhkina & Diego Guala & Thomas Bromley, 2022. "Quantum Monte Carlo for Economics: Stress Testing and Macroeconomic Deep Learning," Staff Working Papers 22-29, Bank of Canada.
    7. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    9. Yulong Dong & Jonathan A. Gross & Murphy Yuezhen Niu, 2025. "Optimal low-depth quantum signal-processing phase estimation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    10. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    11. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Daniel Christian Lawo & Rana Abu Bakar & Abraham Cano Aguilera & Filippo Cugini & José Luis Imaña & Idelfonso Tafur Monroy & Juan Jose Vegas Olmos, 2024. "Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel," Future Internet, MDPI, vol. 16(8), pages 1-22, August.
    14. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Thorsten B. Wahl & Bo Han & Benjamin Béri, 2024. "Topologically ordered time crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Iris Cong & Nishad Maskara & Minh C. Tran & Hannes Pichler & Giulia Semeghini & Susanne F. Yelin & Soonwon Choi & Mikhail D. Lukin, 2024. "Enhancing detection of topological order by local error correction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Andreas Gritsch & Alexander Ulanowski & Jakob Pforr & Andreas Reiserer, 2025. "Optical single-shot readout of spin qubits in silicon," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    19. William P. Livingston & Machiel S. Blok & Emmanuel Flurin & Justin Dressel & Andrew N. Jordan & Irfan Siddiqi, 2022. "Experimental demonstration of continuous quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55342-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.