IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30672-2.html
   My bibliography  Save this article

Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters

Author

Listed:
  • J.-B. Trebbia

    (Univ Bordeaux, LP2N
    Institut d’Optique & CNRS, LP2N)

  • Q. Deplano

    (Univ Bordeaux, LP2N
    Institut d’Optique & CNRS, LP2N)

  • P. Tamarat

    (Univ Bordeaux, LP2N
    Institut d’Optique & CNRS, LP2N)

  • B. Lounis

    (Univ Bordeaux, LP2N
    Institut d’Optique & CNRS, LP2N)

Abstract

The control and manipulation of quantum-entangled states is crucial for the development of quantum technologies. A promising route is to couple solid-state quantum emitters through their optical dipole-dipole interactions. Entanglement in itself is challenging, as it requires both nanometric distances between emitters and nearly degenerate electronic transitions. Here we implement hyperspectral imaging to identify pairs of coupled dibenzanthanthrene molecules, and find distinctive spectral signatures of maximally entangled superradiant and subradiant electronic states by tuning the molecular optical resonances with Stark effect. We demonstrate far-field selective excitation of the long-lived subradiant delocalized state with a laser field tailored in amplitude and phase. Optical nanoscopy of the coupled molecules unveils spatial signatures that result from quantum interferences in their excitation pathways and reveal the location of each emitter. Controlled electronic-states superposition will help deciphering more complex physical or biological mechanisms governed by the coherent coupling and developing quantum information schemes.

Suggested Citation

  • J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30672-2
    DOI: 10.1038/s41467-022-30672-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30672-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30672-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Hwang & M. Pototschnig & R. Lettow & G. Zumofen & A. Renn & S. Götzinger & V. Sandoghdar, 2009. "A single-molecule optical transistor," Nature, Nature, vol. 460(7251), pages 76-80, July.
    2. Jun Rui & David Wei & Antonio Rubio-Abadal & Simon Hollerith & Johannes Zeiher & Dan M. Stamper-Kurn & Christian Gross & Immanuel Bloch, 2020. "A subradiant optical mirror formed by a single structured atomic layer," Nature, Nature, vol. 583(7816), pages 369-374, July.
    3. David Press & Thaddeus D. Ladd & Bingyang Zhang & Yoshihisa Yamamoto, 2008. "Complete quantum control of a single quantum dot spin using ultrafast optical pulses," Nature, Nature, vol. 456(7219), pages 218-221, November.
    4. Claudio U. Hail & Christian Höller & Korenobu Matsuzaki & Patrik Rohner & Jan Renger & Vahid Sandoghdar & Dimos Poulikakos & Hadi Eghlidi, 2019. "Nanoprinting organic molecules at the quantum level," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Elisabetta Collini & Cathy Y. Wong & Krystyna E. Wilk & Paul M. G. Curmi & Paul Brumer & Gregory D. Scholes, 2010. "Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature," Nature, Nature, vol. 463(7281), pages 644-647, February.
    6. Gregory S. Engel & Tessa R. Calhoun & Elizabeth L. Read & Tae-Kyu Ahn & Tomáš Mančal & Yuan-Chung Cheng & Robert E. Blankenship & Graham R. Fleming, 2007. "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems," Nature, Nature, vol. 446(7137), pages 782-786, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reda M. El-Shishtawy & Robert Haddon & Saleh Al-Heniti & Bahaaudin Raffah & Sayed Abdel-Khalek & Kamal Berrada & Yas Al-Hadeethi, 2016. "Realistic Quantum Control of Energy Transfer in Photosynthetic Processes," Energies, MDPI, vol. 9(12), pages 1-11, December.
    2. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    3. Arif Ullah & Pavlo O. Dral, 2022. "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Longo, Giuseppe & Montévil, Maël, 2013. "Extended criticality, phase spaces and enablement in biology," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 64-79.
    5. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    6. Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    7. Vishal Kumar Jaiswal & Daniel Aranda Ruiz & Vasilis Petropoulos & Piotr Kabaciński & Francesco Montorsi & Lorenzo Uboldi & Simone Ugolini & Shaul Mukamel & Giulio Cerullo & Marco Garavelli & Fabrizio , 2024. "Sub-100-fs energy transfer in coenzyme NADH is a coherent process assisted by a charge-transfer state," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Gabor Vattay & Stuart Kauffman & Samuli Niiranen, 2014. "Quantum Biology on the Edge of Quantum Chaos," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    9. Cuadra, Lucas & Nieto-Borge, José Carlos, 2024. "Connecting continuous models of quantum systems to complex networks: Application to electron transport in real-world one dimensional van der Waals materials," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    10. Tobias Eul & Eva Prinz & Michael Hartelt & Benjamin Frisch & Martin Aeschlimann & Benjamin Stadtmüller, 2022. "Coherent response of the electronic system driven by non-interfering laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Arnault, Pablo & Debbasch, Fabrice, 2016. "Landau levels for discrete-time quantum walks in artificial magnetic fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 179-191.
    12. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    13. Carsten Lippe & Tanita Klas & Jana Bender & Patrick Mischke & Thomas Niederprüm & Herwig Ott, 2021. "Experimental realization of a 3D random hopping model," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    14. Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    17. Jon G. C. Kragskow & Jonathan Marbey & Christian D. Buch & Joscha Nehrkorn & Mykhaylo Ozerov & Stergios Piligkos & Stephen Hill & Nicholas F. Chilton, 2022. "Analysis of vibronic coupling in a 4f molecular magnet with FIRMS," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Daniel Manzano, 2013. "Quantum Transport in Networks and Photosynthetic Complexes at the Steady State," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    20. Kai Müller & Karl S. Schellhammer & Nico Gräßler & Bipasha Debnath & Fupin Liu & Yulia Krupskaya & Karl Leo & Martin Knupfer & Frank Ortmann, 2023. "Directed exciton transport highways in organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30672-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.