IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40400-z.html
   My bibliography  Save this article

Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons

Author

Listed:
  • Connor K. Terry Weatherly

    (Northwestern University)

  • Justin Provazza

    (Northwestern University)

  • Emily A. Weiss

    (Northwestern University)

  • Roel Tempelaar

    (Northwestern University)

Abstract

This work proposes a photophysical phenomenon whereby ultraviolet/visible (UV/vis) excitation of a molecule involving a Franck-Condon (FC) active vibration yields infrared (IR) emission by strong coupling to an optical cavity. The resulting UV/vis-to-IR photonic down conversion process is mediated by vibrational polaritons in the electronic excited state potential. It is shown that the formation of excited state vibrational polaritons (ESVP) via UV/vis excitation only involve vibrational modes with both a non-zero FC activity and IR activity in the excited state. Density functional theory calculations are used to identify 1-Pyreneacetic acid as a molecule with this property and the dynamics of ESVP are modeled. Overall, this work introduces an avenue of polariton chemistry where excited state dynamics are influenced by the formation of vibrational polaritons. Along with this, the UV/vis-to-IR photonic down conversion is potentially useful in both sensing excited state vibrations and quantum transduction schemes.

Suggested Citation

  • Connor K. Terry Weatherly & Justin Provazza & Emily A. Weiss & Roel Tempelaar, 2023. "Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40400-z
    DOI: 10.1038/s41467-023-40400-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40400-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40400-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao E. Li & Abraham Nitzan & Joseph E. Subotnik, 2022. "Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xinyang Li & Arkajit Mandal & Pengfei Huo, 2021. "Cavity frequency-dependent theory for vibrational polariton chemistry," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. A. Shalabney & J. George & J. Hutchison & G. Pupillo & C. Genet & T. W. Ebbesen, 2015. "Coherent coupling of molecular resonators with a microcavity mode," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    4. Lachlan P. Lindoy & Arkajit Mandal & David R. Reichman, 2023. "Quantum dynamical effects of vibrational strong coupling in chemical reactivity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Tao E. Li & Abraham Nitzan & Joseph E. Subotnik, 2022. "Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Sindhana Pannir-Sivajothi & Jorge A. Campos-Gonzalez-Angulo & Luis A. Martínez-Martínez & Shubham Sinha & Joel Yuen-Zhou, 2022. "Driving chemical reactions with polariton condensates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lachlan P. Lindoy & Arkajit Mandal & David R. Reichman, 2023. "Quantum dynamical effects of vibrational strong coupling in chemical reactivity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Qi Yu & Joel M. Bowman, 2023. "Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Irene Dolado & Carlos Maciel-Escudero & Elizaveta Nikulina & Evgenii Modin & Francesco Calavalle & Shu Chen & Andrei Bylinkin & Francisco Javier Alfaro-Mozaz & Jiahan Li & James H. Edgar & Fèlix Casan, 2022. "Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Christian Schäfer & Johannes Flick & Enrico Ronca & Prineha Narang & Angel Rubio, 2022. "Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Wihan Adi & Samir Rosas & Aidana Beisenova & Shovasis Kumar Biswas & Hongyan Mei & David A. Czaplewski & Filiz Yesilkoy, 2024. "Trapping light in air with membrane metasurfaces for vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Fabijan Pavošević & Robert L. Smith & Angel Rubio, 2023. "Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40400-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.