IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26617-w.html
   My bibliography  Save this article

Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors

Author

Listed:
  • Raj Pandya

    (University of Cambridge, J.J. Thomson Avenue)

  • Richard Y. S. Chen

    (University of Cambridge, J.J. Thomson Avenue)

  • Qifei Gu

    (University of Cambridge, J.J. Thomson Avenue)

  • Jooyoung Sung

    (University of Cambridge, J.J. Thomson Avenue)

  • Christoph Schnedermann

    (University of Cambridge, J.J. Thomson Avenue)

  • Oluwafemi S. Ojambati

    (University of Cambridge, J.J. Thomson Avenue)

  • Rohit Chikkaraddy

    (University of Cambridge, J.J. Thomson Avenue)

  • Jeffrey Gorman

    (University of Cambridge, J.J. Thomson Avenue)

  • Gianni Jacucci

    (University of Cambridge, Lensfield Road)

  • Olimpia D. Onelli

    (University of Cambridge, Lensfield Road)

  • Tom Willhammar

    (Stockholm University)

  • Duncan N. Johnstone

    (University of Cambridge)

  • Sean M. Collins

    (University of Cambridge)

  • Paul A. Midgley

    (University of Cambridge)

  • Florian Auras

    (University of Cambridge, J.J. Thomson Avenue)

  • Tomi Baikie

    (University of Cambridge, J.J. Thomson Avenue)

  • Rahul Jayaprakash

    (University of Sheffield)

  • Fabrice Mathevet

    (Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université)

  • Richard Soucek

    (Sorbonne Université)

  • Matthew Du

    (University of California San Diego)

  • Antonios M. Alvertis

    (University of Cambridge, J.J. Thomson Avenue)

  • Arjun Ashoka

    (University of Cambridge, J.J. Thomson Avenue)

  • Silvia Vignolini

    (University of Cambridge, Lensfield Road)

  • David G. Lidzey

    (University of Sheffield)

  • Jeremy J. Baumberg

    (University of Cambridge, J.J. Thomson Avenue)

  • Richard H. Friend

    (University of Cambridge, J.J. Thomson Avenue)

  • Thierry Barisien

    (Sorbonne Université)

  • Laurent Legrand

    (Sorbonne Université)

  • Alex W. Chin

    (Sorbonne Université)

  • Joel Yuen-Zhou

    (University of California San Diego)

  • Semion K. Saikin

    (Harvard University
    Kebotix Inc.)

  • Philipp Kukura

    (University of Oxford)

  • Andrew J. Musser

    (Cornell University, Baker Laboratory)

  • Akshay Rao

    (University of Cambridge, J.J. Thomson Avenue)

Abstract

Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons

Suggested Citation

  • Raj Pandya & Richard Y. S. Chen & Qifei Gu & Jooyoung Sung & Christoph Schnedermann & Oluwafemi S. Ojambati & Rohit Chikkaraddy & Jeffrey Gorman & Gianni Jacucci & Olimpia D. Onelli & Tom Willhammar &, 2021. "Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26617-w
    DOI: 10.1038/s41467-021-26617-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26617-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26617-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oluwafemi S. Ojambati & Rohit Chikkaraddy & William D. Deacon & Matthew Horton & Dean Kos & Vladimir A. Turek & Ulrich F. Keyser & Jeremy J. Baumberg, 2019. "Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. D. G. Lidzey & D. D. C. Bradley & M. S. Skolnick & T. Virgili & S. Walker & D. M. Whittaker, 1998. "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, Nature, vol. 395(6697), pages 53-55, September.
    3. Gleb M. Akselrod & Parag B. Deotare & Nicholas J. Thompson & Jiye Lee & William A. Tisdale & Marc A. Baldo & Vinod M. Menon & Vladimir Bulović, 2014. "Visualization of exciton transport in ordered and disordered molecular solids," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    4. Ji Tang & Jian Zhang & Yuanchao Lv & Hong Wang & Fa Feng Xu & Chuang Zhang & Liaoxin Sun & Jiannian Yao & Yong Sheng Zhao, 2021. "Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. D. Snoke & S. Denev & Y. Liu & L. Pfeiffer & K. West, 2002. "Long-range transport in excitonic dark states in coupled quantum wells," Nature, Nature, vol. 418(6899), pages 754-757, August.
    6. Miaosheng Wang & Jie Lin & Yu-Che Hsiao & Xingyuan Liu & Bin Hu, 2019. "Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. Rohit Chikkaraddy & Bart de Nijs & Felix Benz & Steven J. Barrow & Oren A. Scherman & Edina Rosta & Angela Demetriadou & Peter Fox & Ortwin Hess & Jeremy J. Baumberg, 2016. "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature, Nature, vol. 535(7610), pages 127-130, July.
    8. Carmen Palacios-Berraquero & Dhiren M. Kara & Alejandro R.-P. Montblanch & Matteo Barbone & Pawel Latawiec & Duhee Yoon & Anna K. Ott & Marko Loncar & Andrea C. Ferrari & Mete Atatüre, 2017. "Large-scale quantum-emitter arrays in atomically thin semiconductors," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    9. Yi Yu & Suman Mallick & Mao Wang & Karl Börjesson, 2021. "Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minjung Son & Zachary T. Armstrong & Ryan T. Allen & Abitha Dhavamani & Michael S. Arnold & Martin T. Zanni, 2022. "Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Arjun Ashoka & Nicolas Gauriot & Aswathy V. Girija & Nipun Sawhney & Alexander J. Sneyd & Kenji Watanabe & Takashi Taniguchi & Jooyoung Sung & Christoph Schnedermann & Akshay Rao, 2022. "Direct observation of ultrafast singlet exciton fission in three dimensions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Ilia Sokolovskii & Ruth H. Tichauer & Dmitry Morozov & Johannes Feist & Gerrit Groenhof, 2023. "Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arpan Dutta & Ville Tiainen & Ilia Sokolovskii & Luís Duarte & Nemanja Markešević & Dmitry Morozov & Hassan A. Qureshi & Siim Pikker & Gerrit Groenhof & J. Jussi Toppari, 2024. "Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Daniel Timmer & Moritz Gittinger & Thomas Quenzel & Sven Stephan & Yu Zhang & Marvin F. Schumacher & Arne Lützen & Martin Silies & Sergei Tretiak & Jin-Hui Zhong & Antonietta De Sio & Christoph Lienau, 2023. "Plasmon mediated coherent population oscillations in molecular aggregates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shu Hu & Junyang Huang & Rakesh Arul & Ana Sánchez-Iglesias & Yuling Xiong & Luis M. Liz-Marzán & Jeremy J. Baumberg, 2024. "Robust consistent single quantum dot strong coupling in plasmonic nanocavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Zhengyi Lu & Jiamin Ji & Haiming Ye & Hao Zhang & Shunping Zhang & Hongxing Xu, 2024. "Quantifying the ultimate limit of plasmonic near-field enhancement," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Shima Rajabali & Sergej Markmann & Elsa Jöchl & Mattias Beck & Christian A. Lehner & Werner Wegscheider & Jérôme Faist & Giacomo Scalari, 2022. "An ultrastrongly coupled single terahertz meta-atom," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Hangyong Shan & Ivan Iorsh & Bo Han & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Takashi Taniguchi & Sebastian Klembt & Sven Höfling & S, 2022. "Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Rosario R. Riso & Tor S. Haugland & Enrico Ronca & Henrik Koch, 2022. "Molecular orbital theory in cavity QED environments," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Emanuil S. Yanev & Thomas P. Darlington & Sophia A. Ladyzhets & Matthew C. Strasbourg & Chiara Trovatello & Song Liu & Daniel A. Rhodes & Kobi Hall & Aditya Sinha & Nicholas J. Borys & James C. Hone &, 2024. "Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2021. "Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Ahmed Jaber & Michael Reitz & Avinash Singh & Ali Maleki & Yongbao Xin & Brian T. Sullivan & Ksenia Dolgaleva & Robert W. Boyd & Claudiu Genes & Jean-Michel Ménard, 2024. "Hybrid architectures for terahertz molecular polaritonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Christian Schäfer & Johannes Flick & Enrico Ronca & Prineha Narang & Angel Rubio, 2022. "Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Minjung Son & Zachary T. Armstrong & Ryan T. Allen & Abitha Dhavamani & Michael S. Arnold & Martin T. Zanni, 2022. "Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Shuai Zhang & Baichang Li & Xinzhong Chen & Francesco L. Ruta & Yinming Shao & Aaron J. Sternbach & A. S. McLeod & Zhiyuan Sun & Lin Xiong & S. L. Moore & Xinyi Xu & Wenjing Wu & Sara Shabani & Lin Zh, 2022. "Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Kaihong Sun & Raphael F. Ribeiro, 2024. "Theoretical formulation of chemical equilibrium under vibrational strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Gwangwoo Kim & Benjamin Huet & Christopher E. Stevens & Kiyoung Jo & Jeng-Yuan Tsai & Saiphaneendra Bachu & Meghan Leger & Seunguk Song & Mahfujur Rahaman & Kyung Yeol Ma & Nicholas R. Glavin & Hyeon , 2024. "Confinement of excited states in two-dimensional, in-plane, quantum heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26617-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.