IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48690-7.html
   My bibliography  Save this article

General synthesis of ionic-electronic coupled two-dimensional materials

Author

Listed:
  • Xiang Xu

    (Huazhong University of Science and Technology)

  • Yunxin Chen

    (Huazhong University of Science and Technology)

  • Pengbin Liu

    (Huazhong University of Science and Technology)

  • Hao Luo

    (Wuhan University of Technology)

  • Zexin Li

    (Huazhong University of Science and Technology)

  • Dongyan Li

    (Huazhong University of Science and Technology)

  • Haoyun Wang

    (Huazhong University of Science and Technology)

  • Xingyu Song

    (Huazhong University of Science and Technology)

  • Jinsong Wu

    (Wuhan University of Technology)

  • Xing Zhou

    (Huazhong University of Science and Technology)

  • Tianyou Zhai

    (Huazhong University of Science and Technology
    Optics Valley Laboratory)

Abstract

Two-dimensional (2D) AMX2 compounds are a family of mixed ionic and electronic conductors (where A is a monovalent metal ion, M is a trivalent metal, and X is a chalcogen) that offer a fascinating platform to explore intrinsic coupled ionic-electronic properties. However, the synthesis of 2D AMX2 compounds remains challenging due to their multielement characteristics and various by-products. Here, we report a separated-precursor-supply chemical vapor deposition strategy to manipulate the chemical reactions and evaporation of precursors, facilitating the successful fabrication of 20 types of 2D AMX2 flakes. Notably, a 10.4 nm-thick AgCrS2 flake shows superionic behavior at room temperature, with an ionic conductivity of 192.8 mS/cm. Room temperature ferroelectricity and reconfigurable positive/negative photovoltaic currents have been observed in CuScS2 flakes. This study not only provides an effective approach for the synthesis of multielement 2D materials with unique properties, but also lays the foundation for the exploration of 2D AMX2 compounds in electronic, optoelectronic, and neuromorphic devices.

Suggested Citation

  • Xiang Xu & Yunxin Chen & Pengbin Liu & Hao Luo & Zexin Li & Dongyan Li & Haoyun Wang & Xingyu Song & Jinsong Wu & Xing Zhou & Tianyou Zhai, 2024. "General synthesis of ionic-electronic coupled two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48690-7
    DOI: 10.1038/s41467-024-48690-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48690-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48690-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Liu & Taotao Li & Liang Ma & Weisheng Li & Si Gao & Wenjie Sun & Ruikang Dong & Xilu Zou & Dongxu Fan & Liangwei Shao & Chenyi Gu & Ningxuan Dai & Zhihao Yu & Xiaoqing Chen & Xuecou Tu & Yuefeng N, 2022. "Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire," Nature, Nature, vol. 605(7908), pages 69-75, May.
    2. Yi-Chen Yin & Jing-Tian Yang & Jin-Da Luo & Gong-Xun Lu & Zhongyuan Huang & Jian-Ping Wang & Pai Li & Feng Li & Ye-Chao Wu & Te Tian & Yu-Feng Meng & Hong-Sheng Mo & Yong-Hui Song & Jun-Nan Yang & Li-, 2023. "A LaCl3-based lithium superionic conductor compatible with lithium metal," Nature, Nature, vol. 616(7955), pages 77-83, April.
    3. Zhenjia Zhou & Fuchen Hou & Xianlei Huang & Gang Wang & Zihao Fu & Weilin Liu & Guowen Yuan & Xiaoxiang Xi & Jie Xu & Junhao Lin & Libo Gao, 2023. "Stack growth of wafer-scale van der Waals superconductor heterostructures," Nature, Nature, vol. 621(7979), pages 499-505, September.
    4. Jia Li & Xiangdong Yang & Yang Liu & Bolong Huang & Ruixia Wu & Zhengwei Zhang & Bei Zhao & Huifang Ma & Weiqi Dang & Zheng Wei & Kai Wang & Zhaoyang Lin & Xingxu Yan & Mingzi Sun & Bo Li & Xiaoqing P, 2020. "General synthesis of two-dimensional van der Waals heterostructure arrays," Nature, Nature, vol. 579(7799), pages 368-374, March.
    5. Pieremanuele Canepa & Shou-Hang Bo & Gopalakrishnan Sai Gautam & Baris Key & William D. Richards & Tan Shi & Yaosen Tian & Yan Wang & Juchuan Li & Gerbrand Ceder, 2017. "High magnesium mobility in ternary spinel chalcogenides," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xiaowei Guo & Erhong Song & Wei Zhao & Shumao Xu & Wenli Zhao & Yongjiu Lei & Yuqiang Fang & Jianjun Liu & Fuqiang Huang, 2022. "Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Teng Ma & Hao Chen & Kunihiro Yananose & Xin Zhou & Lin Wang & Runlai Li & Ziyu Zhu & Zhenyue Wu & Qing-Hua Xu & Jaejun Yu & Cheng Wei Qiu & Alessandro Stroppa & Kian Ping Loh, 2022. "Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Aziam, Hasna & Larhrib, Badre & Hakim, Charifa & Sabi, Noha & Ben Youcef, Hicham & Saadoune, Ismael, 2022. "Solid-state electrolytes for beyond lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Ruoxin Wang & Jianhao Qian & Xiaofang Chen & Ze-Xian Low & Yu Chen & Hongyu Ma & Heng-An Wu & Cara M. Doherty & Durga Acharya & Zongli Xie & Matthew R. Hill & Wei Shen & Fengchao Wang & Huanting Wang, 2023. "Pyro-layered heterostructured nanosheet membrane for hydrogen separation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Chao Chang & Xiaowen Zhang & Weixuan Li & Quanlin Guo & Zuo Feng & Chen Huang & Yunlong Ren & Yingying Cai & Xu Zhou & Jinhuan Wang & Zhilie Tang & Feng Ding & Wenya Wei & Kaihui Liu & Xiaozhi Xu, 2024. "Remote epitaxy of single-crystal rhombohedral WS2 bilayers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Mengshi Yu & Congwei Tan & Yuling Yin & Junchuan Tang & Xiaoyin Gao & Hongtao Liu & Feng Ding & Hailin Peng, 2024. "Integrated 2D multi-fin field-effect transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Seunguk Song & Aram Yoon & Sora Jang & Jason Lynch & Jihoon Yang & Juwon Han & Myeonggi Choe & Young Ho Jin & Cindy Yueli Chen & Yeryun Cheon & Jinsung Kwak & Changwook Jeong & Hyeonsik Cheong & Deep , 2023. "Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Manzhang Xu & Hongjia Ji & Lu Zheng & Weiwei Li & Jing Wang & Hanxin Wang & Lei Luo & Qianbo Lu & Xuetao Gan & Zheng Liu & Xuewen Wang & Wei Huang, 2024. "Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48690-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.