IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37932-9.html
   My bibliography  Save this article

Pyro-layered heterostructured nanosheet membrane for hydrogen separation

Author

Listed:
  • Ruoxin Wang

    (Monash University)

  • Jianhao Qian

    (University of Science and Technology of China)

  • Xiaofang Chen

    (Monash University
    East China Normal University)

  • Ze-Xian Low

    (Monash University
    Nanjing Tech University)

  • Yu Chen

    (Monash University)

  • Hongyu Ma

    (Monash University)

  • Heng-An Wu

    (University of Science and Technology of China)

  • Cara M. Doherty

    (CSIRO Manufacturing)

  • Durga Acharya

    (CSIRO Manufacturing)

  • Zongli Xie

    (CSIRO Manufacturing)

  • Matthew R. Hill

    (Monash University
    CSIRO Manufacturing)

  • Wei Shen

    (Monash University)

  • Fengchao Wang

    (University of Science and Technology of China)

  • Huanting Wang

    (Monash University)

Abstract

Engineering different two-dimensional materials into heterostructured membranes with unique physiochemical properties and molecular sieving channels offers an effective way to design membranes for fast and selective gas molecule transport. Here we develop a simple and versatile pyro-layering approach to fabricate heterostructured membranes from boron nitride nanosheets as the main scaffold and graphene nanosheets derived from a chitosan precursor as the filler. The rearrangement of the graphene nanosheets adjoining the boron nitride nanosheets during the pyro-layering treatment forms precise in-plane slit-like nanochannels and a plane-to-plane spacing of ~3.0 Å, thereby endowing specific gas transport pathways for selective hydrogen transport. The heterostructured membrane shows a high H2 permeability of 849 Barrer, with a H2/CO2 selectivity of 290. This facile and scalable technique holds great promise for the fabrication of heterostructures as next-generation membranes for enhancing the efficiency of gas separation and purification processes.

Suggested Citation

  • Ruoxin Wang & Jianhao Qian & Xiaofang Chen & Ze-Xian Low & Yu Chen & Hongyu Ma & Heng-An Wu & Cara M. Doherty & Durga Acharya & Zongli Xie & Matthew R. Hill & Wei Shen & Fengchao Wang & Huanting Wang, 2023. "Pyro-layered heterostructured nanosheet membrane for hydrogen separation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37932-9
    DOI: 10.1038/s41467-023-37932-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37932-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37932-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    2. Shiqi Huang & Mostapha Dakhchoune & Wen Luo & Emad Oveisi & Guangwei He & Mojtaba Rezaei & Jing Zhao & Duncan T. L. Alexander & Andreas Züttel & Michael S. Strano & Kumar Varoon Agrawal, 2018. "Single-layer graphene membranes by crack-free transfer for gas mixture separation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Weiwei Lei & Vadym N. Mochalin & Dan Liu & Si Qin & Yury Gogotsi & Ying Chen, 2015. "Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    4. Hubiao Huang & Zhigong Song & Ning Wei & Li Shi & Yiyin Mao & Yulong Ying & Luwei Sun & Zhiping Xu & Xinsheng Peng, 2013. "Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    5. Jia Li & Xiangdong Yang & Yang Liu & Bolong Huang & Ruixia Wu & Zhengwei Zhang & Bei Zhao & Huifang Ma & Weiqi Dang & Zheng Wei & Kai Wang & Zhaoyang Lin & Xingxu Yan & Mingzi Sun & Bo Li & Xiaoqing P, 2020. "General synthesis of two-dimensional van der Waals heterostructure arrays," Nature, Nature, vol. 579(7799), pages 368-374, March.
    6. Linfeng Lei & Fengjiao Pan & Arne Lindbråthen & Xiangping Zhang & Magne Hillestad & Yi Nie & Lu Bai & Xuezhong He & Michael D. Guiver, 2021. "Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Li Ding & Yanying Wei & Libo Li & Tao Zhang & Haihui Wang & Jian Xue & Liang-Xin Ding & Suqing Wang & Jürgen Caro & Yury Gogotsi, 2018. "MXene molecular sieving membranes for highly efficient gas separation," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. JianHao Qian & HengAn Wu & FengChao Wang, 2023. "A generalized Knudsen theory for gas transport with specular and diffuse reflections," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Zongyao Zhou & Kangning Zhao & Heng-Yu Chi & Yueqing Shen & Shuqing Song & Kuang-Jung Hsu & Mojtaba Chevalier & Wenxiong Shi & Kumar Varoon Agrawal, 2024. "Electrochemical-repaired porous graphene membranes for precise ion-ion separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Xiaowei Guo & Erhong Song & Wei Zhao & Shumao Xu & Wenli Zhao & Yongjiu Lei & Yuqiang Fang & Jianjun Liu & Fuqiang Huang, 2022. "Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Qiang Gao & Jin Mo Bok & Ping Ai & Jing Liu & Hongtao Yan & Xiangyu Luo & Yongqing Cai & Cong Li & Yang Wang & Chaohui Yin & Hao Chen & Genda Gu & Fengfeng Zhang & Feng Yang & Shenjin Zhang & Qinjun P, 2024. "ARPES detection of superconducting gap sign in unconventional superconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Teng Ma & Hao Chen & Kunihiro Yananose & Xin Zhou & Lin Wang & Runlai Li & Ziyu Zhu & Zhenyue Wu & Qing-Hua Xu & Jaejun Yu & Cheng Wei Qiu & Alessandro Stroppa & Kian Ping Loh, 2022. "Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    16. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Boxuan Yang & Bibek Bhujel & Daniel G. Chica & Evan J. Telford & Xavier Roy & Fatima Ibrahim & Mairbek Chshiev & Maxen Cosset-Chéneau & Bart J. van Wees, 2024. "Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Xiang-Rui Liu & Hanbin Deng & Yuntian Liu & Zhouyi Yin & Congrun Chen & Yu-Peng Zhu & Yichen Yang & Zhicheng Jiang & Zhengtai Liu & Mao Ye & Dawei Shen & Jia-Xin Yin & Kedong Wang & Qihang Liu & Yue Z, 2023. "Spectroscopic signature of obstructed surface states in SrIn2P2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Kamble, Ashwin R. & Patel, Chetan M. & Murthy, Z.V.P., 2021. "A review on the recent advances in mixed matrix membranes for gas separation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37932-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.