IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54948-x.html
   My bibliography  Save this article

Self-assembly of 1T/1H superlattices in transition metal dichalcogenides

Author

Listed:
  • Chaojie Luo

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Guohua Cao

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Beilin Wang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Lili Jiang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Hengyi Zhao

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Tongrui Li

    (University of Science and Technology of China)

  • Xiaolin Tai

    (University of Science and Technology of China)

  • Zhiyong Lin

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Yue Lin

    (University of Science and Technology of China)

  • Zhe Sun

    (University of Science and Technology of China)

  • Ping Cui

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Hui Zhang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Zhenyu Zhang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Changgan Zeng

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Heterostructures and superlattices composed of layered transition metal dichalcogenides (TMDs), celebrated for their superior emergent properties over individual components, offer significant promise for the development of multifunctional electronic devices. However, conventional fabrication techniques for these structures depend on layer-by-layer artificial construction and are hindered by their complexity and inefficiency. Herein, we introduce a universal strategy for the automated synthesis of TMD superlattice single crystals through self-assembly, exemplified by the NbSe2-xTex 1T/1H superlattice. The core principle of this strategy is to balance the formation energies of T (octahedral) and H (trigonal prismatic) phases. By adjusting the Te to Se stoichiometric ratio in NbSe2-xTex, we reduce the formation energy disparity between the T and H phases, enabling the self-assembly of 1T and 1H layers into a 1T/1H superlattice. The resulting 1T/1H superlattices retain electronic characteristics of both 1T and 1H layers. We further validate the universality of this strategy by achieving 1T/1H superlattices through substituting Nb atoms in NbSe2 with V or Ti atoms. This self-assembly for superlattice crystal synthesis approach could extend to other layered materials, opening new avenues for efficient fabrication and broad applications of superlattices.

Suggested Citation

  • Chaojie Luo & Guohua Cao & Beilin Wang & Lili Jiang & Hengyi Zhao & Tongrui Li & Xiaolin Tai & Zhiyong Lin & Yue Lin & Zhe Sun & Ping Cui & Hui Zhang & Zhenyu Zhang & Changgan Zeng, 2024. "Self-assembly of 1T/1H superlattices in transition metal dichalcogenides," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54948-x
    DOI: 10.1038/s41467-024-54948-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54948-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54948-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aday J. Molina-Mendoza & Emerson Giovanelli & Wendel S. Paz & Miguel Angel Niño & Joshua O. Island & Charalambos Evangeli & Lucía Aballe & Michael Foerster & Herre S. J. van der Zant & Gabino Rubio-Bo, 2017. "Franckeite as a naturally occurring van der Waals heterostructure," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    2. Zhong Wan & Gang Qiu & Huaying Ren & Qi Qian & Yaochen Li & Dong Xu & Jingyuan Zhou & Jingxuan Zhou & Boxuan Zhou & Laiyuan Wang & Ting-Hsun Yang & Zdeněk Sofer & Yu Huang & Kang L. Wang & Xiangfeng D, 2024. "Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices," Nature, Nature, vol. 632(8023), pages 69-74, August.
    3. Zhenjia Zhou & Fuchen Hou & Xianlei Huang & Gang Wang & Zihao Fu & Weilin Liu & Guowen Yuan & Xiaoxiang Xi & Jie Xu & Junhao Lin & Libo Gao, 2023. "Stack growth of wafer-scale van der Waals superconductor heterostructures," Nature, Nature, vol. 621(7979), pages 499-505, September.
    4. Wen Wan & Rishav Harsh & Antonella Meninno & Paul Dreher & Sandra Sajan & Haojie Guo & Ion Errea & Fernando Juan & Miguel M. Ugeda, 2023. "Evidence for ground state coherence in a two-dimensional Kondo lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Eylon Persky & Anders V. Bjørlig & Irena Feldman & Avior Almoalem & Ehud Altman & Erez Berg & Itamar Kimchi & Jonathan Ruhman & Amit Kanigel & Beena Kalisky, 2022. "Magnetic memory and spontaneous vortices in a van der Waals superconductor," Nature, Nature, vol. 607(7920), pages 692-696, July.
    6. I. Silber & S. Mathimalar & I. Mangel & A. K. Nayak & O. Green & N. Avraham & H. Beidenkopf & I. Feldman & A. Kanigel & A. Klein & M. Goldstein & A. Banerjee & E. Sela & Y. Dagan, 2024. "Two-component nematic superconductivity in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    7. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    8. Jiadong Zhou & Wenjie Zhang & Yung-Chang Lin & Jin Cao & Yao Zhou & Wei Jiang & Huifang Du & Bijun Tang & Jia Shi & Bingyan Jiang & Xun Cao & Bo Lin & Qundong Fu & Chao Zhu & Wei Guo & Yizhong Huang &, 2022. "Heterodimensional superlattice with in-plane anomalous Hall effect," Nature, Nature, vol. 609(7925), pages 46-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao-Bo Liu & Congkuan Tian & Yuqiang Fang & Hongtao Rong & Lu Cao & Xinjian Wei & Hang Cui & Mantang Chen & Di Chen & Yuanjun Song & Jian Cui & Jiankun Li & Shuyue Guan & Shuang Jia & Chaoyu Chen & W, 2024. "Nematic Ising superconductivity with hidden magnetism in few-layer 6R-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Cosme G. Ayani & Michele Pisarra & Iván M. Ibarburu & Clara Rebanal & Manuela Garnica & Fabián Calleja & Fernando Martín & Amadeo L. Vázquez de Parga, 2024. "Electron delocalization in a 2D Mott insulator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Singh, Deobrat & Khossossi, Nabil & Lizárraga, Raquel & Sonvane, Yogesh, 2024. "Theoretical prediction of a high-performance two-dimensional type-II MoSi2N4/As vdW heterostructure for photovoltaic solar cells," Renewable Energy, Elsevier, vol. 237(PC).
    5. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. I. Silber & S. Mathimalar & I. Mangel & A. K. Nayak & O. Green & N. Avraham & H. Beidenkopf & I. Feldman & A. Kanigel & A. Klein & M. Goldstein & A. Banerjee & E. Sela & Y. Dagan, 2024. "Two-component nematic superconductivity in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    8. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Yu Ji & Guang-Ping Hao & Yong-Tao Tan & Wenqi Xiong & Yu Liu & Wenzhe Zhou & Dai-Ming Tang & Renzhi Ma & Shengjun Yuan & Takayoshi Sasaki & Marcelo Lozada-Hidalgo & Andre K. Geim & Pengzhan Sun, 2024. "High proton conductivity through angstrom-porous titania," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Chenli Huang & Rong Sun & Lipiao Bao & Xinyue Tian & Changwang Pan & Mengyang Li & Wangqiang Shen & Kun Guo & Bingwu Wang & Xing Lu & Song Gao, 2023. "A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    13. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Xinrui Yang & Lu Han & Hongkai Ning & Shaoqing Xu & Bo Hao & Yi-Chi Li & Taotao Li & Yuan Gao & Shengjun Yan & Yueying Li & Chenyi Gu & Weisheng Li & Zhengbin Gu & Yingzhuo Lun & Yi Shi & Jian Zhou & , 2024. "Ultralow-pressure-driven polarization switching in ferroelectric membranes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Yuxiang Gao & Fenglin Deng & Ri He & Zhicheng Zhong, 2025. "Spontaneous curvature in two-dimensional van der Waals heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    16. Nikhil Mathur & Arunabh Mukherjee & Xingyu Gao & Jialun Luo & Brendan A. McCullian & Tongcang Li & A. Nick Vamivakas & Gregory D. Fuchs, 2022. "Excited-state spin-resonance spectroscopy of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − defect centers in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Qi Feng & Junxi Duan & Ping Wang & Wei Jiang & Huimin Peng & Jinrui Zhong & Jin Cao & Yuqing Hu & Qiuli Li & Qinsheng Wang & Jiadong Zhou & Yugui Yao, 2024. "Heterodimensional Kondo superlattices with strong anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Md Gius Uddin & Susobhan Das & Abde Mayeen Shafi & Lei Wang & Xiaoqi Cui & Fedor Nigmatulin & Faisal Ahmed & Andreas C. Liapis & Weiwei Cai & Zongyin Yang & Harri Lipsanen & Tawfique Hasan & Hoon Hahn, 2024. "Broadband miniaturized spectrometers with a van der Waals tunnel diode," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54948-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.