IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1543-d753543.html
   My bibliography  Save this article

Life-Related Hazards of Materials Applied to Mg–S Batteries

Author

Listed:
  • Krzysztof Siczek

    (Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

Nowadays, rechargeable batteries utilizing an S cathode together with an Mg anode are under substantial interest and development. The review is made from the point of view of materials engaged during the development of the Mg–S batteries, their sulfur cathodes, magnesium anodes, electrolyte systems, current collectors, and separators. Simultaneously, various hazards related to the use of such materials are discussed. It was found that the most numerous groups of hazards are posed by the material groups of cathodes and electrolytes. Such hazards vary widely in type and degree of danger and are related to human bodies, aquatic life, flammability of materials, or the release of flammable or toxic gases by the latter.

Suggested Citation

  • Krzysztof Siczek, 2022. "Life-Related Hazards of Materials Applied to Mg–S Batteries," Energies, MDPI, vol. 15(4), pages 1-44, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1543-:d:753543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Liang & Yun Zhao & Yanxi Li, 2019. "Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety," Energies, MDPI, vol. 12(17), pages 1-10, September.
    2. Chaojiang Niu & Hongkyung Lee & Shuru Chen & Qiuyan Li & Jason Du & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2019. "High-energy lithium metal pouch cells with limited anode swelling and long stable cycles," Nature Energy, Nature, vol. 4(7), pages 551-559, July.
    3. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    4. D. Aurbach & Z. Lu & A. Schechter & Y. Gofer & H. Gizbar & R. Turgeman & Y. Cohen & M. Moshkovich & E. Levi, 2000. "Prototype systems for rechargeable magnesium batteries," Nature, Nature, vol. 407(6805), pages 724-727, October.
    5. Pieremanuele Canepa & Shou-Hang Bo & Gopalakrishnan Sai Gautam & Baris Key & William D. Richards & Tan Shi & Yaosen Tian & Yan Wang & Juchuan Li & Gerbrand Ceder, 2017. "High magnesium mobility in ternary spinel chalcogenides," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    6. Hee Soo Kim & Timothy S. Arthur & Gary D. Allred & Jaroslav Zajicek & John G. Newman & Alexander E. Rodnyansky & Allen G. Oliver & William C. Boggess & John Muldoon, 2011. "Structure and compatibility of a magnesium electrolyte with a sulphur cathode," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    7. Xia Li & Mohammad Banis & Andrew Lushington & Xiaofei Yang & Qian Sun & Yang Zhao & Changqi Liu & Qizheng Li & Biqiong Wang & Wei Xiao & Changhong Wang & Minsi Li & Jianwen Liang & Ruying Li & Yongfen, 2018. "A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yawei Chen & Menghao Li & Yue Liu & Yulin Jie & Wanxia Li & Fanyang Huang & Xinpeng Li & Zixu He & Xiaodi Ren & Yunhua Chen & Xianhui Meng & Tao Cheng & Meng Gu & Shuhong Jiao & Ruiguo Cao, 2023. "Origin of dendrite-free lithium deposition in concentrated electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yasumasa Tomita & Ryo Saito & Ayaka Nagata & Yohei Yamane & Yoshiumi Kohno, 2020. "Synthesis, Crystal Structure, and Ionic Conductivity of MgAl 2-x Ga x Cl 8 and MgGa 2 Cl 7 Br," Energies, MDPI, vol. 13(24), pages 1-9, December.
    5. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    7. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    8. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    9. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
    13. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    19. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    20. Irina Stenina & Ruslan Shaydullin & Tatiana Kulova & Anna Kuz’mina & Nataliya Tabachkova & Andrey Yaroslavtsev, 2020. "Effect of Carbon Additives on the Electrochemical Performance of Li 4 Ti 5 O 12 /C Anodes," Energies, MDPI, vol. 13(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1543-:d:753543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.