IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics030626192201248x.html
   My bibliography  Save this article

Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries

Author

Listed:
  • Yoon, Da Hye
  • Park, Yong Joon

Abstract

Instability of the cathode/solid electrolyte interface is a critical issue limiting the commercialization of all-solid-state batteries (ASSBs). Specifically, lithium thiophosphates (sulfide electrolytes), promising solid electrolytes, are highly reactive with oxide cathodes, leading to undesirable side reactions and electrolyte decomposition during cycling. Surface coating of oxide cathodes is an efficient approach to suppress undesirable interfacial reactions. Several ternary compounds, such as LiNbO3, LiTaO3, and Li2ZrO3, with suitable ionic conductivities have been applied as coating materials due to their appropriate stabilities against sulfide electrolytes. However, the fabrication of a coating layer containing ternary oxides requires high-temperature (over 600–800 °C) heat treatment for the homogeneous reaction of the constituent ions, which can deteriorate the performances of high-Ni cathodes. Accordingly, herein, a coating layer was synthesized using lithium bis(oxalato)borate (LiBOB) via low-temperature (below 400 °C) heat treatment. LiBOB formed thin and homogeneous coating layers on the surfaces of cathodes. LiBOB-coated cathode heat-treated at 350 °C presented higher discharge capacity, better rate capability, and lower impedance value as compared to those of the pristine cathode. Considering X-ray photoelectron spectra and energy-dispersive X-ray spectroscopy analyses of the composite cathodes, the LiBOB coating layer formed at 350 °C significantly reduced electrolyte decomposition and side reactions at the cathode/electrolyte interface, which enhanced the electrochemical performances of the LiBOB-coated cathodes. This result confirms that the LiBOB-based coating is an effective approach to improve the stability of the cathode/sulfide e Basically lectrolyte interface. Our simple and unique approach based on additives, such as LiBOB, has the potential to trigger new research on the fabrication of surface coatings at low temperatures (below 400 °C) for the cathodes of ASSBs.

Suggested Citation

  • Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201248x
    DOI: 10.1016/j.apenergy.2022.119991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201248X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    2. Yuki Kato & Satoshi Hori & Toshiya Saito & Kota Suzuki & Masaaki Hirayama & Akio Mitsui & Masao Yonemura & Hideki Iba & Ryoji Kanno, 2016. "High-power all-solid-state batteries using sulfide superionic conductors," Nature Energy, Nature, vol. 1(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Wu, Zhijun & Xie, Zhengkun & Yoshida, Akihiro & Wang, Zhongde & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2019. "Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 367-385.
    6. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Xiao Zhan & Miao Li & Xiaolin Zhao & Yaning Wang & Sha Li & Weiwei Wang & Jiande Lin & Zi-Ang Nan & Jiawei Yan & Zhefei Sun & Haodong Liu & Fei Wang & Jiayu Wan & Jianjun Liu & Qiaobao Zhang & Li Zhan, 2024. "Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    17. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Sunyoung Lee & Hayoung Park & Jae Young Kim & Jihoon Kim & Min-Ju Choi & Sangwook Han & Sewon Kim & Wonju Kim & Ho Won Jang & Jungwon Park & Kisuk Kang, 2024. "Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Oluwasegun M. Ayoola & Alper Buldum & Siamak Farhad & Sammy A. Ojo, 2022. "A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries," Energies, MDPI, vol. 15(19), pages 1-21, October.
    20. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201248x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.