IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v623y2023i7988d10.1038_s41586-023-06653-w.html
   My bibliography  Save this article

Interface design for all-solid-state lithium batteries

Author

Listed:
  • Hongli Wan

    (University of Maryland)

  • Zeyi Wang

    (University of Maryland)

  • Weiran Zhang

    (University of Maryland)

  • Xinzi He

    (University of Maryland)

  • Chunsheng Wang

    (University of Maryland)

Abstract

The operation of high-energy all-solid-state lithium-metal batteries at low stack pressure is challenging owing to the Li dendrite growth at the Li anodes and the high interfacial resistance at the cathodes1–4. Here we design a Mg16Bi84 interlayer at the Li/Li6PS5Cl interface to suppress the Li dendrite growth, and a F-rich interlayer on LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes to reduce the interfacial resistance. During Li plating–stripping cycles, Mg migrates from the Mg16Bi84 interlayer to the Li anode converting Mg16Bi84 into a multifunctional LiMgSx–Li3Bi–LiMg structure with the layers functioning as a solid electrolyte interphase, a porous Li3Bi sublayer and a solid binder (welding porous Li3Bi onto the Li anode), respectively. The Li3Bi sublayer with its high ionic/electronic conductivity ratio allows Li to deposit only on the Li anode surface and grow into the porous Li3Bi sublayer, which ameliorates pressure (stress) changes. The NMC811 with the F-rich interlayer converts into F-doped NMC811 cathodes owing to the electrochemical migration of the F anion into the NMC811 at a high potential of 4.3 V stabilizing the cathodes. The anode and cathode interlayer designs enable the NMC811/Li6PS5Cl/Li cell to achieve a capacity of 7.2 mAh cm−2 at 2.55 mA cm−2, and the LiNiO2/Li6PS5Cl/Li cell to achieve a capacity of 11.1 mAh cm−2 with a cell-level energy density of 310 Wh kg−1 at a low stack pressure of 2.5 MPa. The Mg16Bi84 anode interlayer and F-rich cathode interlayer provide a general solution for all-solid-state lithium-metal batteries to achieve high energy and fast charging capability at low stack pressure.

Suggested Citation

  • Hongli Wan & Zeyi Wang & Weiran Zhang & Xinzi He & Chunsheng Wang, 2023. "Interface design for all-solid-state lithium batteries," Nature, Nature, vol. 623(7988), pages 739-744, November.
  • Handle: RePEc:nat:nature:v:623:y:2023:i:7988:d:10.1038_s41586-023-06653-w
    DOI: 10.1038/s41586-023-06653-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06653-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06653-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Han Su & Jingru Li & Yu Zhong & Yu Liu & Xuhong Gao & Juner Kuang & Minkang Wang & Chunxi Lin & Xiuli Wang & Jiangping Tu, 2024. "A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:623:y:2023:i:7988:d:10.1038_s41586-023-06653-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.